营养栏结构对肉鸡热性能的影响

IF 1.6 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of Applied Poultry Research Pub Date : 2024-01-22 DOI:10.1016/j.japr.2024.100412
K.G. Griggs , J.D. Davis , J.L. Purswell , G.D. Chesser , C.M. Edge , J.C. Campbell
{"title":"营养栏结构对肉鸡热性能的影响","authors":"K.G. Griggs ,&nbsp;J.D. Davis ,&nbsp;J.L. Purswell ,&nbsp;G.D. Chesser ,&nbsp;C.M. Edge ,&nbsp;J.C. Campbell","doi":"10.1016/j.japr.2024.100412","DOIUrl":null,"url":null,"abstract":"<div><p>Nutritional test pens are commonly used to segregate and geolocate birds in commercial-scale broiler houses to control spatial variation from the environment. Pens should subject test birds to similar environmental conditions as birds roaming free in the house, however, discussions on pen construction materials, design, and placement have focused on durability and handling with little regard for the pen's thermal environment. Simulated birds were constructed with a metal bowl and a light bulb heat source to mimic the heat generation of large commercial broilers. Bowl surface temperature (<strong>BST</strong>) was measured as a model for the surface temperature of a broiler housed in a nutritional pen. Effects of panel open area (100% (control), 89%, 85%, 70%, 50%, and 30%) and air velocity (2, 3, and 4 m/s) were factorially tested on BST in a wind tunnel. Panels with an open area of less than 70% were different (<em>P</em> &lt; 0.0001) from free air (100% open area). There was a difference of 5°C (9°F) for BST between the most restrictive panel (30%) and free air (100%), demonstrating a large difference in the thermal environment that birds might experience if air is restricted. Air velocity treatments were different (<em>P</em> &lt; 0.0001) with mean BST increasing as air velocity decreased. Panels should be constructed with open areas greater than 70% accounting for structural framing and other obstructions as well as expected dust accumulation. While pen durability and handling are important for on-site success, these parameters should not overshadow restrictive airflow pen designs that would potentially alter thermal environmental conditions in nutritional treatment comparisons.</p><p>Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the authors or the U.S. Department of Agriculture.</p></div>","PeriodicalId":15240,"journal":{"name":"Journal of Applied Poultry Research","volume":"33 2","pages":"Article 100412"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1056617124000114/pdfft?md5=5f56087646c4e88a72b94b073f893a0f&pid=1-s2.0-S1056617124000114-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of nutritional pen construction on the thermal performance of broilers\",\"authors\":\"K.G. Griggs ,&nbsp;J.D. Davis ,&nbsp;J.L. Purswell ,&nbsp;G.D. Chesser ,&nbsp;C.M. Edge ,&nbsp;J.C. Campbell\",\"doi\":\"10.1016/j.japr.2024.100412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nutritional test pens are commonly used to segregate and geolocate birds in commercial-scale broiler houses to control spatial variation from the environment. Pens should subject test birds to similar environmental conditions as birds roaming free in the house, however, discussions on pen construction materials, design, and placement have focused on durability and handling with little regard for the pen's thermal environment. Simulated birds were constructed with a metal bowl and a light bulb heat source to mimic the heat generation of large commercial broilers. Bowl surface temperature (<strong>BST</strong>) was measured as a model for the surface temperature of a broiler housed in a nutritional pen. Effects of panel open area (100% (control), 89%, 85%, 70%, 50%, and 30%) and air velocity (2, 3, and 4 m/s) were factorially tested on BST in a wind tunnel. Panels with an open area of less than 70% were different (<em>P</em> &lt; 0.0001) from free air (100% open area). There was a difference of 5°C (9°F) for BST between the most restrictive panel (30%) and free air (100%), demonstrating a large difference in the thermal environment that birds might experience if air is restricted. Air velocity treatments were different (<em>P</em> &lt; 0.0001) with mean BST increasing as air velocity decreased. Panels should be constructed with open areas greater than 70% accounting for structural framing and other obstructions as well as expected dust accumulation. While pen durability and handling are important for on-site success, these parameters should not overshadow restrictive airflow pen designs that would potentially alter thermal environmental conditions in nutritional treatment comparisons.</p><p>Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the authors or the U.S. Department of Agriculture.</p></div>\",\"PeriodicalId\":15240,\"journal\":{\"name\":\"Journal of Applied Poultry Research\",\"volume\":\"33 2\",\"pages\":\"Article 100412\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1056617124000114/pdfft?md5=5f56087646c4e88a72b94b073f893a0f&pid=1-s2.0-S1056617124000114-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Poultry Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1056617124000114\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Poultry Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1056617124000114","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

无摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of nutritional pen construction on the thermal performance of broilers

Nutritional test pens are commonly used to segregate and geolocate birds in commercial-scale broiler houses to control spatial variation from the environment. Pens should subject test birds to similar environmental conditions as birds roaming free in the house, however, discussions on pen construction materials, design, and placement have focused on durability and handling with little regard for the pen's thermal environment. Simulated birds were constructed with a metal bowl and a light bulb heat source to mimic the heat generation of large commercial broilers. Bowl surface temperature (BST) was measured as a model for the surface temperature of a broiler housed in a nutritional pen. Effects of panel open area (100% (control), 89%, 85%, 70%, 50%, and 30%) and air velocity (2, 3, and 4 m/s) were factorially tested on BST in a wind tunnel. Panels with an open area of less than 70% were different (P < 0.0001) from free air (100% open area). There was a difference of 5°C (9°F) for BST between the most restrictive panel (30%) and free air (100%), demonstrating a large difference in the thermal environment that birds might experience if air is restricted. Air velocity treatments were different (P < 0.0001) with mean BST increasing as air velocity decreased. Panels should be constructed with open areas greater than 70% accounting for structural framing and other obstructions as well as expected dust accumulation. While pen durability and handling are important for on-site success, these parameters should not overshadow restrictive airflow pen designs that would potentially alter thermal environmental conditions in nutritional treatment comparisons.

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the authors or the U.S. Department of Agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Poultry Research
Journal of Applied Poultry Research 农林科学-奶制品与动物科学
CiteScore
4.10
自引率
10.50%
发文量
80
审稿时长
104 days
期刊介绍: The Journal of Applied Poultry Research (JAPR) publishes original research reports, field reports, and reviews on breeding, hatching, health and disease, layer management, meat bird processing and products, meat bird management, microbiology, food safety, nutrition, environment, sanitation, welfare, and economics. As of January 2020, JAPR will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers. The readers of JAPR are in education, extension, industry, and government, including research, teaching, administration, veterinary medicine, management, production, quality assurance, product development, and technical services. Nutritionists, breeder flock supervisors, production managers, microbiologists, laboratory personnel, food safety and sanitation managers, poultry processing managers, feed manufacturers, and egg producers use JAPR to keep up with current applied poultry research.
期刊最新文献
Applied research note: Optimized corticosterone extraction following feather dissolution by keratinase Partial replacement of soybean meal with cottonseed meal in diets of broiler chicken sustains performance by upregulating the expression of nutrient transporter genes in small intestine Alleviating heat stress on broiler breeder hens: Effect of dietary antioxidant supplementation on reproductive performance, egg quality, offspring growth, and antioxidant capacity Comparison of biochar and Poultry Litter Treatment (PLT) amendments on broiler litter quality and bird performance Effects of Eucalyptus globulus leaves powder on growth performance, internal organs weights, hematological and biochemical parameters of Isa brown pullets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1