不同重力环境下振动颗粒球的耗散行为

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-24 DOI:10.1007/s12217-024-10097-w
Kai Zhang, Meng Chen, Farong Kou, Wenzhe Li
{"title":"不同重力环境下振动颗粒球的耗散行为","authors":"Kai Zhang,&nbsp;Meng Chen,&nbsp;Farong Kou,&nbsp;Wenzhe Li","doi":"10.1007/s12217-024-10097-w","DOIUrl":null,"url":null,"abstract":"<div><p>The dissipation behavior of granular balls in a quasi-2D closed container subjected to vertical vibration is studied by means of discrete element method in this paper. Four universal granular phases playing high damping effect are finalized by simulating the gravity environments of Earth, Mars and Moon, respectively. Based on the commonality of dense granular clusters in the four high damping granular phases, the ideal dissipation behavior of granular balls in the quasi-2D closed container is indicated. Moreover, the optimal damping mechanism of granular balls in the quasi-2D vibrated closed container is further revealed by analyzing the differences of kinetic energy and potential energy of vibrated granular balls in the three different gravity environments. This study lays a foundation for maximizing the damping effect of vibrated granular materials with constant mass by controlling their dissipation behavior, which provides a new idea for the universal design of granular damping structures in engineering practice.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissipation Behaviors of Vibrated Granular Balls in Different Gravity Environments\",\"authors\":\"Kai Zhang,&nbsp;Meng Chen,&nbsp;Farong Kou,&nbsp;Wenzhe Li\",\"doi\":\"10.1007/s12217-024-10097-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dissipation behavior of granular balls in a quasi-2D closed container subjected to vertical vibration is studied by means of discrete element method in this paper. Four universal granular phases playing high damping effect are finalized by simulating the gravity environments of Earth, Mars and Moon, respectively. Based on the commonality of dense granular clusters in the four high damping granular phases, the ideal dissipation behavior of granular balls in the quasi-2D closed container is indicated. Moreover, the optimal damping mechanism of granular balls in the quasi-2D vibrated closed container is further revealed by analyzing the differences of kinetic energy and potential energy of vibrated granular balls in the three different gravity environments. This study lays a foundation for maximizing the damping effect of vibrated granular materials with constant mass by controlling their dissipation behavior, which provides a new idea for the universal design of granular damping structures in engineering practice.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10097-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10097-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用离散元法研究了准二维封闭容器中颗粒球受到垂直振动时的耗散行为。通过分别模拟地球、火星和月球的重力环境,最终确定了四种具有高阻尼效应的通用粒相。基于四种高阻尼颗粒相中致密颗粒团的共性,指出了颗粒球在准二维封闭容器中的理想耗散行为。此外,通过分析振动颗粒球在三种不同重力环境下的动能和势能差异,进一步揭示了颗粒球在准二维振动封闭容器中的最佳阻尼机制。该研究为通过控制质量恒定的振动颗粒材料的耗散行为最大化其阻尼效果奠定了基础,为工程实践中颗粒阻尼结构的通用设计提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dissipation Behaviors of Vibrated Granular Balls in Different Gravity Environments

The dissipation behavior of granular balls in a quasi-2D closed container subjected to vertical vibration is studied by means of discrete element method in this paper. Four universal granular phases playing high damping effect are finalized by simulating the gravity environments of Earth, Mars and Moon, respectively. Based on the commonality of dense granular clusters in the four high damping granular phases, the ideal dissipation behavior of granular balls in the quasi-2D closed container is indicated. Moreover, the optimal damping mechanism of granular balls in the quasi-2D vibrated closed container is further revealed by analyzing the differences of kinetic energy and potential energy of vibrated granular balls in the three different gravity environments. This study lays a foundation for maximizing the damping effect of vibrated granular materials with constant mass by controlling their dissipation behavior, which provides a new idea for the universal design of granular damping structures in engineering practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1