{"title":"引力、电磁和弱(费米)相互作用的基本单位","authors":"M. Novello, V. Antunes","doi":"10.1007/s10701-023-00741-7","DOIUrl":null,"url":null,"abstract":"<div><p>In analogy with Planck’s construction of fundamental quantities in gravitation, we construct fundamental quantities associated with (1) theories of electrodynamics in which the electromagnetic field has a maximum value (e.g. Born-Infeld theory), and (2) the Fermi interaction. This gives us a maximum intensity of the electromagnetic field, and also reveals a close relationship between the fundamental lengths associated with the gravitational and weak interactions, supporting the connection between these two interactions.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental Units in Gravitational, Electromagnetic and Weak (Fermi) Interactions\",\"authors\":\"M. Novello, V. Antunes\",\"doi\":\"10.1007/s10701-023-00741-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In analogy with Planck’s construction of fundamental quantities in gravitation, we construct fundamental quantities associated with (1) theories of electrodynamics in which the electromagnetic field has a maximum value (e.g. Born-Infeld theory), and (2) the Fermi interaction. This gives us a maximum intensity of the electromagnetic field, and also reveals a close relationship between the fundamental lengths associated with the gravitational and weak interactions, supporting the connection between these two interactions.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-023-00741-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00741-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Fundamental Units in Gravitational, Electromagnetic and Weak (Fermi) Interactions
In analogy with Planck’s construction of fundamental quantities in gravitation, we construct fundamental quantities associated with (1) theories of electrodynamics in which the electromagnetic field has a maximum value (e.g. Born-Infeld theory), and (2) the Fermi interaction. This gives us a maximum intensity of the electromagnetic field, and also reveals a close relationship between the fundamental lengths associated with the gravitational and weak interactions, supporting the connection between these two interactions.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.