太阳能操纵垂直磁各向异性以实现柔性自旋电子学

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Frontiers of Physics Pub Date : 2024-01-24 DOI:10.1007/s11467-023-1377-0
Zhexi He, Yifan Zhao, Yujing Du, Meng Zhao, Yuxuan Jiang, Ming Liu, Ziyao Zhou
{"title":"太阳能操纵垂直磁各向异性以实现柔性自旋电子学","authors":"Zhexi He,&nbsp;Yifan Zhao,&nbsp;Yujing Du,&nbsp;Meng Zhao,&nbsp;Yuxuan Jiang,&nbsp;Ming Liu,&nbsp;Ziyao Zhou","doi":"10.1007/s11467-023-1377-0","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible electronics/spintronics attracts researchers’ attention for their application potential abroad in wearable devices, healthcare, and other areas. Those devices’ performance (speed, energy consumption) is highly dependent on manipulating information bits (spin-orientation in flexible spintronics). In this work, we established an organic photovoltaic (OPV)/ ZnO/Pt/Co/Pt heterostructure on flexible PET substrates with perpendicular magnetic anisotropy (PMA). Under sunlight illumination, the photo-electrons generated from the OPV layer transfer into the PMA heterostructure, then they reduce the PMA strength by enhancing the interfacial Rashba field accordingly. The coercive field (<i>H</i><sub>c</sub>) reduces from 800 Oe to 500 Oe at its maximum, and the magnetization can be switched up and down reversibly. The stability of sunlight control of magnetization reversal under various bending conditions is also tested for flexible spintronic applications. Lastly, the voltage output of sunlight-driven PMA is achieved in our prototype device, exhibiting an excellent angular dependence and opening a door towards solar-driven flexible spintronics with much lower energy consumption.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 4","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar manipulations of perpendicular magnetic anisotropy for flexible spintronics\",\"authors\":\"Zhexi He,&nbsp;Yifan Zhao,&nbsp;Yujing Du,&nbsp;Meng Zhao,&nbsp;Yuxuan Jiang,&nbsp;Ming Liu,&nbsp;Ziyao Zhou\",\"doi\":\"10.1007/s11467-023-1377-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flexible electronics/spintronics attracts researchers’ attention for their application potential abroad in wearable devices, healthcare, and other areas. Those devices’ performance (speed, energy consumption) is highly dependent on manipulating information bits (spin-orientation in flexible spintronics). In this work, we established an organic photovoltaic (OPV)/ ZnO/Pt/Co/Pt heterostructure on flexible PET substrates with perpendicular magnetic anisotropy (PMA). Under sunlight illumination, the photo-electrons generated from the OPV layer transfer into the PMA heterostructure, then they reduce the PMA strength by enhancing the interfacial Rashba field accordingly. The coercive field (<i>H</i><sub>c</sub>) reduces from 800 Oe to 500 Oe at its maximum, and the magnetization can be switched up and down reversibly. The stability of sunlight control of magnetization reversal under various bending conditions is also tested for flexible spintronic applications. Lastly, the voltage output of sunlight-driven PMA is achieved in our prototype device, exhibiting an excellent angular dependence and opening a door towards solar-driven flexible spintronics with much lower energy consumption.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":573,\"journal\":{\"name\":\"Frontiers of Physics\",\"volume\":\"19 4\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11467-023-1377-0\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1377-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性电子学/自旋电子学因其在国外可穿戴设备、医疗保健和其他领域的应用潜力而备受研究人员关注。这些设备的性能(速度、能耗)在很大程度上取决于信息比特的操作(柔性自旋电子学中的自旋方向)。在这项工作中,我们在具有垂直磁各向异性(PMA)的柔性 PET 基底上建立了有机光伏(OPV)/ ZnO/Pt/Co/Pt 异质结构。在阳光照射下,OPV 层产生的光电子转移到 PMA 异质结构中,然后通过增强界面拉什巴场相应地降低 PMA 强度。矫顽力场(Hc)从 800 Oe 降低到最大值 500 Oe,磁化率可以上下可逆切换。此外,还测试了在各种弯曲条件下阳光控制磁化反转的稳定性,以实现灵活的自旋电子应用。最后,我们的原型装置实现了阳光驱动 PMA 的电压输出,表现出极佳的角度依赖性,为实现能耗更低的太阳能驱动柔性自旋电子学打开了一扇大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solar manipulations of perpendicular magnetic anisotropy for flexible spintronics

Flexible electronics/spintronics attracts researchers’ attention for their application potential abroad in wearable devices, healthcare, and other areas. Those devices’ performance (speed, energy consumption) is highly dependent on manipulating information bits (spin-orientation in flexible spintronics). In this work, we established an organic photovoltaic (OPV)/ ZnO/Pt/Co/Pt heterostructure on flexible PET substrates with perpendicular magnetic anisotropy (PMA). Under sunlight illumination, the photo-electrons generated from the OPV layer transfer into the PMA heterostructure, then they reduce the PMA strength by enhancing the interfacial Rashba field accordingly. The coercive field (Hc) reduces from 800 Oe to 500 Oe at its maximum, and the magnetization can be switched up and down reversibly. The stability of sunlight control of magnetization reversal under various bending conditions is also tested for flexible spintronic applications. Lastly, the voltage output of sunlight-driven PMA is achieved in our prototype device, exhibiting an excellent angular dependence and opening a door towards solar-driven flexible spintronics with much lower energy consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
期刊最新文献
Erratum to: Noisy intermediate-scale quantum computers Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters Bayesian method for fitting the low-energy constants in chiral perturbation theory Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1