Ravi Raj Saxena, Joydeep Pal, Srinivasan Iyengar, Bhawana Chhaglani, Anurag Ghosh, Venkata N. Padmanabhan, Prabhakar T. Venkata
{"title":"智能无人机的整体能源意识和鲁棒性","authors":"Ravi Raj Saxena, Joydeep Pal, Srinivasan Iyengar, Bhawana Chhaglani, Anurag Ghosh, Venkata N. Padmanabhan, Prabhakar T. Venkata","doi":"10.1145/3641855","DOIUrl":null,"url":null,"abstract":"<p>Drones represent a significant technological shift at the convergence of on-demand cyber-physical systems and edge intelligence. However, realizing their full potential necessitates managing the limited energy resources carefully. Prior work looks at factors such as battery characteristics, intelligent edge sensing considerations, planning and robustness in isolation. But a global view of energy awareness that considers these factors and looks at various tradeoffs is essential. To this end, we present results from our detailed empirical study of battery charge-discharge characteristics and the impact of altitude and lighting on edge inference accuracy. Our energy models, derived from these observations, predict energy usage while performing various manoeuvres with an error of 5.6%, a 2.5X improvement over the state-of-the-art. Furthermore, we propose a holistic energy-aware multi-drone scheduling system that decreases the energy consumed by 21.14% and the mission times by 46.91% over state-of-the-art baselines. To achieve system robustness in the event of link or drone failure, we observe trends in Packet Delivery Ratio to propose a methodology to establish reliable communication between nodes. We release an open-source implementation of our system. Finally, we tie all of these pieces together using a people-counting case study.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"116 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holistic Energy Awareness and Robustness for Intelligent Drones\",\"authors\":\"Ravi Raj Saxena, Joydeep Pal, Srinivasan Iyengar, Bhawana Chhaglani, Anurag Ghosh, Venkata N. Padmanabhan, Prabhakar T. Venkata\",\"doi\":\"10.1145/3641855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drones represent a significant technological shift at the convergence of on-demand cyber-physical systems and edge intelligence. However, realizing their full potential necessitates managing the limited energy resources carefully. Prior work looks at factors such as battery characteristics, intelligent edge sensing considerations, planning and robustness in isolation. But a global view of energy awareness that considers these factors and looks at various tradeoffs is essential. To this end, we present results from our detailed empirical study of battery charge-discharge characteristics and the impact of altitude and lighting on edge inference accuracy. Our energy models, derived from these observations, predict energy usage while performing various manoeuvres with an error of 5.6%, a 2.5X improvement over the state-of-the-art. Furthermore, we propose a holistic energy-aware multi-drone scheduling system that decreases the energy consumed by 21.14% and the mission times by 46.91% over state-of-the-art baselines. To achieve system robustness in the event of link or drone failure, we observe trends in Packet Delivery Ratio to propose a methodology to establish reliable communication between nodes. We release an open-source implementation of our system. Finally, we tie all of these pieces together using a people-counting case study.</p>\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3641855\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641855","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Holistic Energy Awareness and Robustness for Intelligent Drones
Drones represent a significant technological shift at the convergence of on-demand cyber-physical systems and edge intelligence. However, realizing their full potential necessitates managing the limited energy resources carefully. Prior work looks at factors such as battery characteristics, intelligent edge sensing considerations, planning and robustness in isolation. But a global view of energy awareness that considers these factors and looks at various tradeoffs is essential. To this end, we present results from our detailed empirical study of battery charge-discharge characteristics and the impact of altitude and lighting on edge inference accuracy. Our energy models, derived from these observations, predict energy usage while performing various manoeuvres with an error of 5.6%, a 2.5X improvement over the state-of-the-art. Furthermore, we propose a holistic energy-aware multi-drone scheduling system that decreases the energy consumed by 21.14% and the mission times by 46.91% over state-of-the-art baselines. To achieve system robustness in the event of link or drone failure, we observe trends in Packet Delivery Ratio to propose a methodology to establish reliable communication between nodes. We release an open-source implementation of our system. Finally, we tie all of these pieces together using a people-counting case study.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.