交互式人工智能与检索--下一代网络的增强一代

Ruichen Zhang, Hongyang Du, Yinqiu Liu, Dusit Niyato, Jiawen Kang, Sumei Sun, Xuemin Shen, H. Vincent Poor
{"title":"交互式人工智能与检索--下一代网络的增强一代","authors":"Ruichen Zhang, Hongyang Du, Yinqiu Liu, Dusit Niyato, Jiawen Kang, Sumei Sun, Xuemin Shen, H. Vincent Poor","doi":"arxiv-2401.11391","DOIUrl":null,"url":null,"abstract":"With the advance of artificial intelligence (AI), the emergence of Google\nGemini and OpenAI Q* marks the direction towards artificial general\nintelligence (AGI). To implement AGI, the concept of interactive AI (IAI) has\nbeen introduced, which can interactively understand and respond not only to\nhuman user input but also to dynamic system and network conditions. In this\narticle, we explore an integration and enhancement of IAI in networking. We\nfirst comprehensively review recent developments and future perspectives of AI\nand then introduce the technology and components of IAI. We then explore the\nintegration of IAI into the next-generation networks, focusing on how implicit\nand explicit interactions can enhance network functionality, improve user\nexperience, and promote efficient network management. Subsequently, we propose\nan IAI-enabled network management and optimization framework, which consists of\nenvironment, perception, action, and brain units. We also design the pluggable\nlarge language model (LLM) module and retrieval augmented generation (RAG)\nmodule to build the knowledge base and contextual memory for decision-making in\nthe brain unit. We demonstrate the effectiveness of the framework through case\nstudies. Finally, we discuss potential research directions for IAI-based\nnetworks.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive AI with Retrieval-Augmented Generation for Next Generation Networking\",\"authors\":\"Ruichen Zhang, Hongyang Du, Yinqiu Liu, Dusit Niyato, Jiawen Kang, Sumei Sun, Xuemin Shen, H. Vincent Poor\",\"doi\":\"arxiv-2401.11391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advance of artificial intelligence (AI), the emergence of Google\\nGemini and OpenAI Q* marks the direction towards artificial general\\nintelligence (AGI). To implement AGI, the concept of interactive AI (IAI) has\\nbeen introduced, which can interactively understand and respond not only to\\nhuman user input but also to dynamic system and network conditions. In this\\narticle, we explore an integration and enhancement of IAI in networking. We\\nfirst comprehensively review recent developments and future perspectives of AI\\nand then introduce the technology and components of IAI. We then explore the\\nintegration of IAI into the next-generation networks, focusing on how implicit\\nand explicit interactions can enhance network functionality, improve user\\nexperience, and promote efficient network management. Subsequently, we propose\\nan IAI-enabled network management and optimization framework, which consists of\\nenvironment, perception, action, and brain units. We also design the pluggable\\nlarge language model (LLM) module and retrieval augmented generation (RAG)\\nmodule to build the knowledge base and contextual memory for decision-making in\\nthe brain unit. We demonstrate the effectiveness of the framework through case\\nstudies. Finally, we discuss potential research directions for IAI-based\\nnetworks.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.11391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能(AI)的发展,GoogleGemini 和 OpenAI Q* 的出现标志着人工通用智能(AGI)的发展方向。为了实现 AGI,人们提出了交互式人工智能(IAI)的概念,它不仅能交互式地理解和响应人类用户的输入,还能对动态系统和网络条件做出响应。在本文中,我们将探讨如何在网络中整合和增强 IAI。我们首先全面回顾了人工智能的最新发展和未来前景,然后介绍了 IAI 的技术和组件。然后,我们探讨了 IAI 与下一代网络的整合,重点是隐式和显式交互如何增强网络功能、改善用户体验和促进高效网络管理。随后,我们提出了一个由环境、感知、行动和大脑单元组成的 IAI 网络管理和优化框架。我们还设计了可插拔的大型语言模型(LLM)模块和检索增强生成(RAG)模块,以在大脑单元中建立决策所需的知识库和上下文记忆。我们通过案例研究证明了该框架的有效性。最后,我们讨论了基于 IAI 的网络的潜在研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactive AI with Retrieval-Augmented Generation for Next Generation Networking
With the advance of artificial intelligence (AI), the emergence of Google Gemini and OpenAI Q* marks the direction towards artificial general intelligence (AGI). To implement AGI, the concept of interactive AI (IAI) has been introduced, which can interactively understand and respond not only to human user input but also to dynamic system and network conditions. In this article, we explore an integration and enhancement of IAI in networking. We first comprehensively review recent developments and future perspectives of AI and then introduce the technology and components of IAI. We then explore the integration of IAI into the next-generation networks, focusing on how implicit and explicit interactions can enhance network functionality, improve user experience, and promote efficient network management. Subsequently, we propose an IAI-enabled network management and optimization framework, which consists of environment, perception, action, and brain units. We also design the pluggable large language model (LLM) module and retrieval augmented generation (RAG) module to build the knowledge base and contextual memory for decision-making in the brain unit. We demonstrate the effectiveness of the framework through case studies. Finally, we discuss potential research directions for IAI-based networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1