用于 RIS 辅助近场通信的宽带波束成形

Ji Wang, Jian Xiao, Yixuan Zou, Wenwu Xie, Yuanwei Liu
{"title":"用于 RIS 辅助近场通信的宽带波束成形","authors":"Ji Wang, Jian Xiao, Yixuan Zou, Wenwu Xie, Yuanwei Liu","doi":"arxiv-2401.11141","DOIUrl":null,"url":null,"abstract":"A near-field wideband beamforming scheme is investigated for reconfigurable\nintelligent surface (RIS) assisted multiple-input multiple-output (MIMO)\nsystems, in which a deep learning-based end-to-end (E2E) optimization framework\nis proposed to maximize the system spectral efficiency. To deal with the\nnear-field double beam split effect, the base station is equipped with\nfrequency-dependent hybrid precoding architecture by introducing sub-connected\ntrue time delay (TTD) units, while two specific RIS architectures, namely true\ntime delay-based RIS (TTD-RIS) and virtual subarray-based RIS (SA-RIS), are\nexploited to realize the frequency-dependent passive beamforming at the RIS.\nFurthermore, the efficient E2E beamforming models without explicit channel\nstate information are proposed, which jointly exploits the uplink channel\ntraining module and the downlink wideband beamforming module. In the proposed\nnetwork architecture of the E2E models, the classical communication signal\nprocessing methods, i.e., polarized filtering and sparsity transform, are\nleveraged to develop a signal-guided beamforming network. Numerical results\nshow that the proposed E2E models have superior beamforming performance and\nrobustness to conventional beamforming benchmarks. Furthermore, the tradeoff\nbetween the beamforming gain and the hardware complexity is investigated for\ndifferent frequency-dependent RIS architectures, in which the TTD-RIS can\nachieve better spectral efficiency than the SA-RIS while requiring additional\nenergy consumption and hardware cost.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"210 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wideband Beamforming for RIS Assisted Near-Field Communications\",\"authors\":\"Ji Wang, Jian Xiao, Yixuan Zou, Wenwu Xie, Yuanwei Liu\",\"doi\":\"arxiv-2401.11141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A near-field wideband beamforming scheme is investigated for reconfigurable\\nintelligent surface (RIS) assisted multiple-input multiple-output (MIMO)\\nsystems, in which a deep learning-based end-to-end (E2E) optimization framework\\nis proposed to maximize the system spectral efficiency. To deal with the\\nnear-field double beam split effect, the base station is equipped with\\nfrequency-dependent hybrid precoding architecture by introducing sub-connected\\ntrue time delay (TTD) units, while two specific RIS architectures, namely true\\ntime delay-based RIS (TTD-RIS) and virtual subarray-based RIS (SA-RIS), are\\nexploited to realize the frequency-dependent passive beamforming at the RIS.\\nFurthermore, the efficient E2E beamforming models without explicit channel\\nstate information are proposed, which jointly exploits the uplink channel\\ntraining module and the downlink wideband beamforming module. In the proposed\\nnetwork architecture of the E2E models, the classical communication signal\\nprocessing methods, i.e., polarized filtering and sparsity transform, are\\nleveraged to develop a signal-guided beamforming network. Numerical results\\nshow that the proposed E2E models have superior beamforming performance and\\nrobustness to conventional beamforming benchmarks. Furthermore, the tradeoff\\nbetween the beamforming gain and the hardware complexity is investigated for\\ndifferent frequency-dependent RIS architectures, in which the TTD-RIS can\\nachieve better spectral efficiency than the SA-RIS while requiring additional\\nenergy consumption and hardware cost.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"210 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.11141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了可重构智能表面(RIS)辅助多输入多输出(MIMO)系统的近场宽带波束成形方案,其中提出了基于深度学习的端到端(E2E)优化框架,以最大限度地提高系统频谱效率。为了应对近场双波束分裂效应,基站通过引入子连接的真实时延(TTD)单元,配备了频率相关的混合预编码架构,同时利用两种特定的 RIS 架构,即基于真实时延的 RIS(TTD-RIS)和基于虚拟子阵列的 RIS(SA-RIS),在 RIS 上实现频率相关的无源波束成形。此外,还提出了无需明确信道状态信息的高效 E2E 波束成形模型,该模型联合利用了上行链路信道训练模块和下行链路宽带波束成形模块。在所提出的 E2E 模型网络结构中,利用了经典的通信信号处理方法,即极化滤波和稀疏性变换,来开发信号引导的波束成形网络。数值结果表明,与传统波束成形基准相比,所提出的 E2E 模型具有更优越的波束成形性能和稳健性。此外,针对不同的频率相关 RIS 架构,研究了波束成形增益与硬件复杂性之间的权衡,其中 TTD-RIS 比 SA-RIS 能获得更好的频谱效率,但需要额外的能耗和硬件成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wideband Beamforming for RIS Assisted Near-Field Communications
A near-field wideband beamforming scheme is investigated for reconfigurable intelligent surface (RIS) assisted multiple-input multiple-output (MIMO) systems, in which a deep learning-based end-to-end (E2E) optimization framework is proposed to maximize the system spectral efficiency. To deal with the near-field double beam split effect, the base station is equipped with frequency-dependent hybrid precoding architecture by introducing sub-connected true time delay (TTD) units, while two specific RIS architectures, namely true time delay-based RIS (TTD-RIS) and virtual subarray-based RIS (SA-RIS), are exploited to realize the frequency-dependent passive beamforming at the RIS. Furthermore, the efficient E2E beamforming models without explicit channel state information are proposed, which jointly exploits the uplink channel training module and the downlink wideband beamforming module. In the proposed network architecture of the E2E models, the classical communication signal processing methods, i.e., polarized filtering and sparsity transform, are leveraged to develop a signal-guided beamforming network. Numerical results show that the proposed E2E models have superior beamforming performance and robustness to conventional beamforming benchmarks. Furthermore, the tradeoff between the beamforming gain and the hardware complexity is investigated for different frequency-dependent RIS architectures, in which the TTD-RIS can achieve better spectral efficiency than the SA-RIS while requiring additional energy consumption and hardware cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1