通过矢量化汉克尔提升实现同步盲目解混和超分辨率

Haifeng Wang, Jinchi Chen, Hulei Fan, Yuxiang Zhao, Li Yu
{"title":"通过矢量化汉克尔提升实现同步盲目解混和超分辨率","authors":"Haifeng Wang, Jinchi Chen, Hulei Fan, Yuxiang Zhao, Li Yu","doi":"arxiv-2401.11805","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the problem of simultaneous blind demixing and\nsuper-resolution. Leveraging the subspace assumption regarding unknown point\nspread functions, this problem can be reformulated as a low-rank matrix\ndemixing problem. We propose a convex recovery approach that utilizes the\nlow-rank structure of each vectorized Hankel matrix associated with the target\nmatrix. Our analysis reveals that for achieving exact recovery, the number of\nsamples needs to satisfy the condition $n\\gtrsim Ksr \\log (sn)$. Empirical\nevaluations demonstrate the recovery capabilities and the computational\nefficiency of the convex method.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Blind Demixing and Super-resolution via Vectorized Hankel Lift\",\"authors\":\"Haifeng Wang, Jinchi Chen, Hulei Fan, Yuxiang Zhao, Li Yu\",\"doi\":\"arxiv-2401.11805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate the problem of simultaneous blind demixing and\\nsuper-resolution. Leveraging the subspace assumption regarding unknown point\\nspread functions, this problem can be reformulated as a low-rank matrix\\ndemixing problem. We propose a convex recovery approach that utilizes the\\nlow-rank structure of each vectorized Hankel matrix associated with the target\\nmatrix. Our analysis reveals that for achieving exact recovery, the number of\\nsamples needs to satisfy the condition $n\\\\gtrsim Ksr \\\\log (sn)$. Empirical\\nevaluations demonstrate the recovery capabilities and the computational\\nefficiency of the convex method.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.11805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.11805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了同步盲目解混和超分辨率问题。利用关于未知点展函数的子空间假设,这个问题可以被重新表述为低秩矩阵解混问题。我们提出了一种凸复原方法,利用与目标矩阵相关的每个矢量化 Hankel 矩阵的低阶结构。我们的分析表明,要实现精确恢复,样本数量需要满足条件 $n\gtrsim Ksr \log (sn)$。经验评估证明了凸方法的恢复能力和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous Blind Demixing and Super-resolution via Vectorized Hankel Lift
In this work, we investigate the problem of simultaneous blind demixing and super-resolution. Leveraging the subspace assumption regarding unknown point spread functions, this problem can be reformulated as a low-rank matrix demixing problem. We propose a convex recovery approach that utilizes the low-rank structure of each vectorized Hankel matrix associated with the target matrix. Our analysis reveals that for achieving exact recovery, the number of samples needs to satisfy the condition $n\gtrsim Ksr \log (sn)$. Empirical evaluations demonstrate the recovery capabilities and the computational efficiency of the convex method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1