利用个性化可重构智能表面进行个性化空中联合学习

Jiayu Mao, Aylin Yener
{"title":"利用个性化可重构智能表面进行个性化空中联合学习","authors":"Jiayu Mao, Aylin Yener","doi":"arxiv-2401.12149","DOIUrl":null,"url":null,"abstract":"Over-the-air federated learning (OTA-FL) provides bandwidth-efficient\nlearning by leveraging the inherent superposition property of wireless\nchannels. Personalized federated learning balances performance for users with\ndiverse datasets, addressing real-life data heterogeneity. We propose the first\npersonalized OTA-FL scheme through multi-task learning, assisted by personal\nreconfigurable intelligent surfaces (RIS) for each user. We take a cross-layer\napproach that optimizes communication and computation resources for global and\npersonalized tasks in time-varying channels with imperfect channel state\ninformation, using multi-task learning for non-i.i.d data. Our PROAR-PFed\nalgorithm adaptively designs power, local iterations, and RIS configurations.\nWe present convergence analysis for non-convex objectives and demonstrate that\nPROAR-PFed outperforms state-of-the-art on the Fashion-MNIST dataset.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized Over-the-Air Federated Learning with Personalized Reconfigurable Intelligent Surfaces\",\"authors\":\"Jiayu Mao, Aylin Yener\",\"doi\":\"arxiv-2401.12149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over-the-air federated learning (OTA-FL) provides bandwidth-efficient\\nlearning by leveraging the inherent superposition property of wireless\\nchannels. Personalized federated learning balances performance for users with\\ndiverse datasets, addressing real-life data heterogeneity. We propose the first\\npersonalized OTA-FL scheme through multi-task learning, assisted by personal\\nreconfigurable intelligent surfaces (RIS) for each user. We take a cross-layer\\napproach that optimizes communication and computation resources for global and\\npersonalized tasks in time-varying channels with imperfect channel state\\ninformation, using multi-task learning for non-i.i.d data. Our PROAR-PFed\\nalgorithm adaptively designs power, local iterations, and RIS configurations.\\nWe present convergence analysis for non-convex objectives and demonstrate that\\nPROAR-PFed outperforms state-of-the-art on the Fashion-MNIST dataset.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.12149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.12149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空中联合学习(OTA-FL)利用无线信道固有的叠加特性,提供带宽效率高的学习。个性化联合学习可以平衡用户不同数据集的性能,解决现实生活中数据异构的问题。我们提出了首个通过多任务学习的个性化 OTA-FL 方案,该方案由每个用户的个人可重新配置智能表面(RIS)辅助。我们采用跨层方法,在信道状态信息不完善的时变信道中,利用非 i.d 数据的多任务学习,优化全局任务和个性化任务的通信和计算资源。我们提出了非凸目标的收敛性分析,并证明 PROAR-PFed 在时尚-MNIST 数据集上的表现优于最先进水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personalized Over-the-Air Federated Learning with Personalized Reconfigurable Intelligent Surfaces
Over-the-air federated learning (OTA-FL) provides bandwidth-efficient learning by leveraging the inherent superposition property of wireless channels. Personalized federated learning balances performance for users with diverse datasets, addressing real-life data heterogeneity. We propose the first personalized OTA-FL scheme through multi-task learning, assisted by personal reconfigurable intelligent surfaces (RIS) for each user. We take a cross-layer approach that optimizes communication and computation resources for global and personalized tasks in time-varying channels with imperfect channel state information, using multi-task learning for non-i.i.d data. Our PROAR-PFed algorithm adaptively designs power, local iterations, and RIS configurations. We present convergence analysis for non-convex objectives and demonstrate that PROAR-PFed outperforms state-of-the-art on the Fashion-MNIST dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1