Alexander Czaja, Samer Awad, Olga E. Eremina, Augusta Fernando, Cristina Zavaleta
{"title":"评估在高度复用光谱图像中量化 SERS 纳米粒子的非混合方法","authors":"Alexander Czaja, Samer Awad, Olga E. Eremina, Augusta Fernando, Cristina Zavaleta","doi":"10.1002/jrs.6653","DOIUrl":null,"url":null,"abstract":"<p>Surface-enhanced Raman scattering nanoparticles (SERS NPs) offer powerful optical contrast features for imaging assays. Their gold core enhances the inelastic scattering cross section, allowing highly sensitive and rapid detection, and their characteristic sets of narrow spectral bands give them unsurpassed multiplexing capabilities. Multiplexed hyperspectral images are commonly unmixed using a compensation matrix of reference spectra to produce quantitative image channels illustrating the distribution of each material. It is these unmixed channels that are fit for interpretation from assays utilizing SERS NP contrast agents. Some factors that may impact SERS NP quantitative and dynamic range capabilities may include endogenous background heterogeneity, the ability of unmixing algorithms to account for signal variances, and linear system conditioning imposed by contrast agent signals. We report on hyperspectral Raman imaging of mixtures of SERS NPs from an expanded library of contrast agents. We study increasing plexity and varying degrees of system conditioning as inputs to a diverse set of classical, non-negatively constrained, and regularized regression algorithms to investigate which signal features and unmixing methods deliver the most promising quantitation performance with the least error. Raman imaging of SERS NP mixtures is performed on controlled substrates and representative biological specimens, and experimental results are compared against ground truth data. We evaluate spectral fitting fidelity, quantitation, and specificity correlations with system conditioning. Spectral unmixing with a regularized hybrid of least squares regression with principal component analysis (HLP) algorithm approximated spectra with 3.5× better fitting fidelity and 3× better quantitation robustness with tissue background compared with simpler unmixing routines.</p>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of unmixing approaches for the quantitation of SERS nanoparticles in highly multiplexed spectral images\",\"authors\":\"Alexander Czaja, Samer Awad, Olga E. Eremina, Augusta Fernando, Cristina Zavaleta\",\"doi\":\"10.1002/jrs.6653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surface-enhanced Raman scattering nanoparticles (SERS NPs) offer powerful optical contrast features for imaging assays. Their gold core enhances the inelastic scattering cross section, allowing highly sensitive and rapid detection, and their characteristic sets of narrow spectral bands give them unsurpassed multiplexing capabilities. Multiplexed hyperspectral images are commonly unmixed using a compensation matrix of reference spectra to produce quantitative image channels illustrating the distribution of each material. It is these unmixed channels that are fit for interpretation from assays utilizing SERS NP contrast agents. Some factors that may impact SERS NP quantitative and dynamic range capabilities may include endogenous background heterogeneity, the ability of unmixing algorithms to account for signal variances, and linear system conditioning imposed by contrast agent signals. We report on hyperspectral Raman imaging of mixtures of SERS NPs from an expanded library of contrast agents. We study increasing plexity and varying degrees of system conditioning as inputs to a diverse set of classical, non-negatively constrained, and regularized regression algorithms to investigate which signal features and unmixing methods deliver the most promising quantitation performance with the least error. Raman imaging of SERS NP mixtures is performed on controlled substrates and representative biological specimens, and experimental results are compared against ground truth data. We evaluate spectral fitting fidelity, quantitation, and specificity correlations with system conditioning. Spectral unmixing with a regularized hybrid of least squares regression with principal component analysis (HLP) algorithm approximated spectra with 3.5× better fitting fidelity and 3× better quantitation robustness with tissue background compared with simpler unmixing routines.</p>\",\"PeriodicalId\":16926,\"journal\":{\"name\":\"Journal of Raman Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Raman Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6653\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6653","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Assessment of unmixing approaches for the quantitation of SERS nanoparticles in highly multiplexed spectral images
Surface-enhanced Raman scattering nanoparticles (SERS NPs) offer powerful optical contrast features for imaging assays. Their gold core enhances the inelastic scattering cross section, allowing highly sensitive and rapid detection, and their characteristic sets of narrow spectral bands give them unsurpassed multiplexing capabilities. Multiplexed hyperspectral images are commonly unmixed using a compensation matrix of reference spectra to produce quantitative image channels illustrating the distribution of each material. It is these unmixed channels that are fit for interpretation from assays utilizing SERS NP contrast agents. Some factors that may impact SERS NP quantitative and dynamic range capabilities may include endogenous background heterogeneity, the ability of unmixing algorithms to account for signal variances, and linear system conditioning imposed by contrast agent signals. We report on hyperspectral Raman imaging of mixtures of SERS NPs from an expanded library of contrast agents. We study increasing plexity and varying degrees of system conditioning as inputs to a diverse set of classical, non-negatively constrained, and regularized regression algorithms to investigate which signal features and unmixing methods deliver the most promising quantitation performance with the least error. Raman imaging of SERS NP mixtures is performed on controlled substrates and representative biological specimens, and experimental results are compared against ground truth data. We evaluate spectral fitting fidelity, quantitation, and specificity correlations with system conditioning. Spectral unmixing with a regularized hybrid of least squares regression with principal component analysis (HLP) algorithm approximated spectra with 3.5× better fitting fidelity and 3× better quantitation robustness with tissue background compared with simpler unmixing routines.
期刊介绍:
The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications.
Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.