西北太平洋亚热带地区细菌生长、纳米鞭毛虫死亡损失和病毒的垂直变化

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-01-23 DOI:10.1016/j.jmarsys.2024.103963
Feng-Hsun Chang , Gwo-Ching Gong , Chih-hao Hsieh , Patrichka Wei-Yi Chen , Vladimir Mukhanov , An-Yi Tsai
{"title":"西北太平洋亚热带地区细菌生长、纳米鞭毛虫死亡损失和病毒的垂直变化","authors":"Feng-Hsun Chang ,&nbsp;Gwo-Ching Gong ,&nbsp;Chih-hao Hsieh ,&nbsp;Patrichka Wei-Yi Chen ,&nbsp;Vladimir Mukhanov ,&nbsp;An-Yi Tsai","doi":"10.1016/j.jmarsys.2024.103963","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Nanoflagellate grazing and viral lysis are the two main causes of mortality losses of marine bacterioplankton. Deciphering the mortality losses across the water column helps us understand their ecological and biogeochemical consequences. In this study, we implemented the two-point modified dilution method consisting of treatment of undiluted and 25% nanoflagellates and/or virus density at the surface (3 m), deep chlorophyll maximum (DCM), and the </span>mesopelagic zone (300 m and 500 m deep) in the subtropical northwestern Pacific Ocean in summer. We found that the bacterial per capita growth (2.3 ± 0.6 d</span><sup>−1</sup>) and production (12.4 ± 6.9 μgC L<sup>−1</sup> d<sup>−1</sup><span><span>) were significantly higher at the DCM layer than at the mesopelagic zone, possibly because of tight bacteria-phytoplankton coupling and trophic interactions between bacteria, nanoflagellates, and viruses. Further, we found that ∼70% of the bacterial mortality loss can be attributed to nanoflagellate grazing in the DCM layer, while most of the mortality loss in the surface and the mesopelagic zone can be attributed to viral lysis. We argue that while bacterial production is more efficiently transferred to higher </span>trophic levels<span> at the DCM layer, it is predominately recycled in the viral loop on the surface and the mesopelagic zone. Our results reveal the vertical variation of bacterial growth, production, mortality loss to nanoflagellate grazing, and viral lysis, from which we could deduct their depth-dependent impacts on carbon flux in the water column. Our study facilitates the understanding of the impacts of nanoflagellates and viruses on bacterioplankton and the bacteria-mediated biogeochemical cycling.</span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical variations of bacterial growth, mortality loss to nanoflagellates, and viruses in the subtropical northwestern Pacific Ocean\",\"authors\":\"Feng-Hsun Chang ,&nbsp;Gwo-Ching Gong ,&nbsp;Chih-hao Hsieh ,&nbsp;Patrichka Wei-Yi Chen ,&nbsp;Vladimir Mukhanov ,&nbsp;An-Yi Tsai\",\"doi\":\"10.1016/j.jmarsys.2024.103963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Nanoflagellate grazing and viral lysis are the two main causes of mortality losses of marine bacterioplankton. Deciphering the mortality losses across the water column helps us understand their ecological and biogeochemical consequences. In this study, we implemented the two-point modified dilution method consisting of treatment of undiluted and 25% nanoflagellates and/or virus density at the surface (3 m), deep chlorophyll maximum (DCM), and the </span>mesopelagic zone (300 m and 500 m deep) in the subtropical northwestern Pacific Ocean in summer. We found that the bacterial per capita growth (2.3 ± 0.6 d</span><sup>−1</sup>) and production (12.4 ± 6.9 μgC L<sup>−1</sup> d<sup>−1</sup><span><span>) were significantly higher at the DCM layer than at the mesopelagic zone, possibly because of tight bacteria-phytoplankton coupling and trophic interactions between bacteria, nanoflagellates, and viruses. Further, we found that ∼70% of the bacterial mortality loss can be attributed to nanoflagellate grazing in the DCM layer, while most of the mortality loss in the surface and the mesopelagic zone can be attributed to viral lysis. We argue that while bacterial production is more efficiently transferred to higher </span>trophic levels<span> at the DCM layer, it is predominately recycled in the viral loop on the surface and the mesopelagic zone. Our results reveal the vertical variation of bacterial growth, production, mortality loss to nanoflagellate grazing, and viral lysis, from which we could deduct their depth-dependent impacts on carbon flux in the water column. Our study facilitates the understanding of the impacts of nanoflagellates and viruses on bacterioplankton and the bacteria-mediated biogeochemical cycling.</span></span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924796324000010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924796324000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

纳米鞭毛虫捕食和病毒溶解是造成海洋浮游细菌死亡的两个主要原因。解读整个水体的死亡损失有助于我们了解其生态和生物地球化学后果。在这项研究中,我们采用了两点改良稀释法,包括在夏季亚热带西北太平洋的表层(3 米)、深层叶绿素最高点(DCM)和中表层区(300 米和 500 米深处)处理未稀释和 25% 的纳米鞭毛虫和/或病毒密度。我们发现,DCM 层的细菌人均生长量(2.3 ± 0.6 d-1)和产量(12.4 ± 6.9 μgC L-1 d-1)明显高于中下层,这可能是因为细菌与浮游植物之间的紧密耦合以及细菌、纳米鞭毛虫和病毒之间的营养相互作用。此外,我们还发现,在 DCM 层,约 70% 的细菌死亡损失可归因于纳米鞭毛虫的捕食,而在表层和中层水区,大部分死亡损失可归因于病毒溶解。我们认为,虽然细菌产量在 DCM 层能更有效地转移到更高的营养级,但它主要在表层和中深海区的病毒循环中被循环利用。我们的研究结果揭示了细菌生长、产量、纳米鞭毛虫捕食造成的死亡损失以及病毒溶解的垂直变化,由此可以推断出它们对水体中碳通量的深度影响。我们的研究有助于了解纳米鞭毛虫和病毒对浮游细菌和细菌介导的生物地球化学循环的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vertical variations of bacterial growth, mortality loss to nanoflagellates, and viruses in the subtropical northwestern Pacific Ocean

Nanoflagellate grazing and viral lysis are the two main causes of mortality losses of marine bacterioplankton. Deciphering the mortality losses across the water column helps us understand their ecological and biogeochemical consequences. In this study, we implemented the two-point modified dilution method consisting of treatment of undiluted and 25% nanoflagellates and/or virus density at the surface (3 m), deep chlorophyll maximum (DCM), and the mesopelagic zone (300 m and 500 m deep) in the subtropical northwestern Pacific Ocean in summer. We found that the bacterial per capita growth (2.3 ± 0.6 d−1) and production (12.4 ± 6.9 μgC L−1 d−1) were significantly higher at the DCM layer than at the mesopelagic zone, possibly because of tight bacteria-phytoplankton coupling and trophic interactions between bacteria, nanoflagellates, and viruses. Further, we found that ∼70% of the bacterial mortality loss can be attributed to nanoflagellate grazing in the DCM layer, while most of the mortality loss in the surface and the mesopelagic zone can be attributed to viral lysis. We argue that while bacterial production is more efficiently transferred to higher trophic levels at the DCM layer, it is predominately recycled in the viral loop on the surface and the mesopelagic zone. Our results reveal the vertical variation of bacterial growth, production, mortality loss to nanoflagellate grazing, and viral lysis, from which we could deduct their depth-dependent impacts on carbon flux in the water column. Our study facilitates the understanding of the impacts of nanoflagellates and viruses on bacterioplankton and the bacteria-mediated biogeochemical cycling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1