Alec S. Henderson , Roslyn I. Hickson , Morgan Furlong , Emma S. McBryde , Michael T. Meehan
{"title":"COVID 时代传染病模型的可重复性","authors":"Alec S. Henderson , Roslyn I. Hickson , Morgan Furlong , Emma S. McBryde , Michael T. Meehan","doi":"10.1016/j.epidem.2024.100743","DOIUrl":null,"url":null,"abstract":"<div><p>Infectious disease modelling has been prominent throughout the COVID-19 pandemic, helping to understand the virus’ transmission dynamics and inform response policies. Given their potential importance and translational impact, we evaluated the computational reproducibility of infectious disease modelling articles from the COVID era. We found that four out of 100 randomly sampled studies released between January 2020 and August 2022 could be completely computationally reproduced using the resources provided (e.g., code, data, instructions) whilst a further eight were partially reproducible. For the 100 most highly cited articles from the same period we found that 11 were completely reproducible with a further 22 partially reproducible. Reflecting on our experience, we discuss common issues affecting computational reproducibility and how these might be addressed.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"46 ","pages":"Article 100743"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000045/pdfft?md5=81964f7b1a598ee07c500b91aefa3c7f&pid=1-s2.0-S1755436524000045-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reproducibility of COVID-era infectious disease models\",\"authors\":\"Alec S. Henderson , Roslyn I. Hickson , Morgan Furlong , Emma S. McBryde , Michael T. Meehan\",\"doi\":\"10.1016/j.epidem.2024.100743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Infectious disease modelling has been prominent throughout the COVID-19 pandemic, helping to understand the virus’ transmission dynamics and inform response policies. Given their potential importance and translational impact, we evaluated the computational reproducibility of infectious disease modelling articles from the COVID era. We found that four out of 100 randomly sampled studies released between January 2020 and August 2022 could be completely computationally reproduced using the resources provided (e.g., code, data, instructions) whilst a further eight were partially reproducible. For the 100 most highly cited articles from the same period we found that 11 were completely reproducible with a further 22 partially reproducible. Reflecting on our experience, we discuss common issues affecting computational reproducibility and how these might be addressed.</p></div>\",\"PeriodicalId\":49206,\"journal\":{\"name\":\"Epidemics\",\"volume\":\"46 \",\"pages\":\"Article 100743\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1755436524000045/pdfft?md5=81964f7b1a598ee07c500b91aefa3c7f&pid=1-s2.0-S1755436524000045-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755436524000045\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436524000045","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Reproducibility of COVID-era infectious disease models
Infectious disease modelling has been prominent throughout the COVID-19 pandemic, helping to understand the virus’ transmission dynamics and inform response policies. Given their potential importance and translational impact, we evaluated the computational reproducibility of infectious disease modelling articles from the COVID era. We found that four out of 100 randomly sampled studies released between January 2020 and August 2022 could be completely computationally reproduced using the resources provided (e.g., code, data, instructions) whilst a further eight were partially reproducible. For the 100 most highly cited articles from the same period we found that 11 were completely reproducible with a further 22 partially reproducible. Reflecting on our experience, we discuss common issues affecting computational reproducibility and how these might be addressed.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.