Bojun Tan, Xiong Yang, Bo Wang, Jinkang Dou, Jing Zhang, Wenjie Li, Bozhou Wang, Jiang Li, Ning Liu
{"title":"一种含醛基团的高能 ZIF,对七种不同的高能材料具有前所未有的 \"负 \"催化特性","authors":"Bojun Tan, Xiong Yang, Bo Wang, Jinkang Dou, Jing Zhang, Wenjie Li, Bozhou Wang, Jiang Li, Ning Liu","doi":"10.1016/j.pnsc.2024.01.010","DOIUrl":null,"url":null,"abstract":"<p><span>Energetic materials possessing high energy content, exceptional heat resistance, and insensitivity have long been recognized as a significant and prominent subject of academic debate. In this study, the necessity for high-energy explosives in both military and civilian domains prompted the introduction of the concept of an “energetic negative-burning rate catalyst” in heat-resistant and insensitive energetic materials. Therefore, a typical and effective catalyst (ZIF-90) was discovered. ZIF-90, which can be easily synthesized and features a large specific surface area and regular pore structure, contributes to molecular-scale changes in the pyrolysis process of energetic materials. Additionally, the presence of surface aldehyde groups facilitates the partial absorption of heat, thereby collectively contributing to the augmentation of pyrolysis peak temperatures for seven distinct energetic materials (RDX, HMX, CL-20, LLM-105, LLM-126, AlH</span><sub>3</sub><span>, and DAP-4). Specifically, the pyrolysis peak temperatures were elevated by 6.6 °C, 1.7 °C, 1.6 °C, 6.4 °C, 1.4 °C, 13.1 °C, and 7.0 °C, respectively. Moreover, the highly stable ZIF-90, functioning as an intrinsically insensitive Energetic Metal-Organic Framework (EMOF), not only effectively mitigates the sensitivity of energetic materials but also ensures minimal energy loss. Notably, the incorporation of a mere 5 wt% of ZIF-90 resulted in a significant enhancement of over one-fold in the heat resistance of LLM-105-based explosive cylinders, thereby validating the practical applicability of ZIF-90 in energetic materials. Moreover, the efficacy of ZIF-90 in solid propellant formulations was corroborated through flame experiments conducted on solid propellants. The development of such a pragmatic and universally applicable energetic negative-burning rate catalyst presents a promising strategy for the future advancement of high-performance, heat-resistant, and insensitive energetic materials.</span></p>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An aldehyde-group-containing energetic ZIF with unprecedented “negative” catalytic properties for seven different energetic materials\",\"authors\":\"Bojun Tan, Xiong Yang, Bo Wang, Jinkang Dou, Jing Zhang, Wenjie Li, Bozhou Wang, Jiang Li, Ning Liu\",\"doi\":\"10.1016/j.pnsc.2024.01.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><span>Energetic materials possessing high energy content, exceptional heat resistance, and insensitivity have long been recognized as a significant and prominent subject of academic debate. In this study, the necessity for high-energy explosives in both military and civilian domains prompted the introduction of the concept of an “energetic negative-burning rate catalyst” in heat-resistant and insensitive energetic materials. Therefore, a typical and effective catalyst (ZIF-90) was discovered. ZIF-90, which can be easily synthesized and features a large specific surface area and regular pore structure, contributes to molecular-scale changes in the pyrolysis process of energetic materials. Additionally, the presence of surface aldehyde groups facilitates the partial absorption of heat, thereby collectively contributing to the augmentation of pyrolysis peak temperatures for seven distinct energetic materials (RDX, HMX, CL-20, LLM-105, LLM-126, AlH</span><sub>3</sub><span>, and DAP-4). Specifically, the pyrolysis peak temperatures were elevated by 6.6 °C, 1.7 °C, 1.6 °C, 6.4 °C, 1.4 °C, 13.1 °C, and 7.0 °C, respectively. Moreover, the highly stable ZIF-90, functioning as an intrinsically insensitive Energetic Metal-Organic Framework (EMOF), not only effectively mitigates the sensitivity of energetic materials but also ensures minimal energy loss. Notably, the incorporation of a mere 5 wt% of ZIF-90 resulted in a significant enhancement of over one-fold in the heat resistance of LLM-105-based explosive cylinders, thereby validating the practical applicability of ZIF-90 in energetic materials. Moreover, the efficacy of ZIF-90 in solid propellant formulations was corroborated through flame experiments conducted on solid propellants. The development of such a pragmatic and universally applicable energetic negative-burning rate catalyst presents a promising strategy for the future advancement of high-performance, heat-resistant, and insensitive energetic materials.</span></p>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pnsc.2024.01.010\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.pnsc.2024.01.010","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
An aldehyde-group-containing energetic ZIF with unprecedented “negative” catalytic properties for seven different energetic materials
Energetic materials possessing high energy content, exceptional heat resistance, and insensitivity have long been recognized as a significant and prominent subject of academic debate. In this study, the necessity for high-energy explosives in both military and civilian domains prompted the introduction of the concept of an “energetic negative-burning rate catalyst” in heat-resistant and insensitive energetic materials. Therefore, a typical and effective catalyst (ZIF-90) was discovered. ZIF-90, which can be easily synthesized and features a large specific surface area and regular pore structure, contributes to molecular-scale changes in the pyrolysis process of energetic materials. Additionally, the presence of surface aldehyde groups facilitates the partial absorption of heat, thereby collectively contributing to the augmentation of pyrolysis peak temperatures for seven distinct energetic materials (RDX, HMX, CL-20, LLM-105, LLM-126, AlH3, and DAP-4). Specifically, the pyrolysis peak temperatures were elevated by 6.6 °C, 1.7 °C, 1.6 °C, 6.4 °C, 1.4 °C, 13.1 °C, and 7.0 °C, respectively. Moreover, the highly stable ZIF-90, functioning as an intrinsically insensitive Energetic Metal-Organic Framework (EMOF), not only effectively mitigates the sensitivity of energetic materials but also ensures minimal energy loss. Notably, the incorporation of a mere 5 wt% of ZIF-90 resulted in a significant enhancement of over one-fold in the heat resistance of LLM-105-based explosive cylinders, thereby validating the practical applicability of ZIF-90 in energetic materials. Moreover, the efficacy of ZIF-90 in solid propellant formulations was corroborated through flame experiments conducted on solid propellants. The development of such a pragmatic and universally applicable energetic negative-burning rate catalyst presents a promising strategy for the future advancement of high-performance, heat-resistant, and insensitive energetic materials.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.