Denis Sh. Sabirov, Alexandra D. Zimina, Alina A. Tukhbatullina
{"title":"赫斯定律要求对相互依存的化学反应的信息熵数学规则进行修改","authors":"Denis Sh. Sabirov, Alexandra D. Zimina, Alina A. Tukhbatullina","doi":"10.1007/s10910-023-01566-5","DOIUrl":null,"url":null,"abstract":"<div><p>In mathematical chemistry, a chemical reaction is represented as a transformation of one molecular ensemble into another one, and information entropy is used for quantitative describing changes in the molecular complexity. The information entropy of a chemical reaction is the difference between the values of the ensembles of products and reagents. As is known, the information entropy of molecular ensemble depends on the information entropies of individual molecules and, additionally, on the cooperative entropy, an emergent parameter that reflects uniting the molecules into the ensemble. Accounting this parameter determines the peculiarities of calculating the information entropy for interdependent chemical reactions. In the present study, we have derived a general formula that connects the information entropy of the complex chemical process with the parameters of its elementary stages and demonstrated its work on typical examples of successive, parallel, and conjugated chemical reactions. Notably, the view of the derived formula differs from the equations used when Hess’ law is applied to the thermodynamic parameters of interdependent reactions. The only case when the Hess’ law has the same analytical expression for both information-entropy and thermodynamic parameters is the isomegethic set of chemical reactions, viz. the system of the successive reactions, in which the size of the molecular ensemble remains constant.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 4","pages":"819 - 835"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hess’ law requires modified mathematical rules for information entropy of interdependent chemical reactions\",\"authors\":\"Denis Sh. Sabirov, Alexandra D. Zimina, Alina A. Tukhbatullina\",\"doi\":\"10.1007/s10910-023-01566-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In mathematical chemistry, a chemical reaction is represented as a transformation of one molecular ensemble into another one, and information entropy is used for quantitative describing changes in the molecular complexity. The information entropy of a chemical reaction is the difference between the values of the ensembles of products and reagents. As is known, the information entropy of molecular ensemble depends on the information entropies of individual molecules and, additionally, on the cooperative entropy, an emergent parameter that reflects uniting the molecules into the ensemble. Accounting this parameter determines the peculiarities of calculating the information entropy for interdependent chemical reactions. In the present study, we have derived a general formula that connects the information entropy of the complex chemical process with the parameters of its elementary stages and demonstrated its work on typical examples of successive, parallel, and conjugated chemical reactions. Notably, the view of the derived formula differs from the equations used when Hess’ law is applied to the thermodynamic parameters of interdependent reactions. The only case when the Hess’ law has the same analytical expression for both information-entropy and thermodynamic parameters is the isomegethic set of chemical reactions, viz. the system of the successive reactions, in which the size of the molecular ensemble remains constant.</p></div>\",\"PeriodicalId\":648,\"journal\":{\"name\":\"Journal of Mathematical Chemistry\",\"volume\":\"62 4\",\"pages\":\"819 - 835\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10910-023-01566-5\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-023-01566-5","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hess’ law requires modified mathematical rules for information entropy of interdependent chemical reactions
In mathematical chemistry, a chemical reaction is represented as a transformation of one molecular ensemble into another one, and information entropy is used for quantitative describing changes in the molecular complexity. The information entropy of a chemical reaction is the difference between the values of the ensembles of products and reagents. As is known, the information entropy of molecular ensemble depends on the information entropies of individual molecules and, additionally, on the cooperative entropy, an emergent parameter that reflects uniting the molecules into the ensemble. Accounting this parameter determines the peculiarities of calculating the information entropy for interdependent chemical reactions. In the present study, we have derived a general formula that connects the information entropy of the complex chemical process with the parameters of its elementary stages and demonstrated its work on typical examples of successive, parallel, and conjugated chemical reactions. Notably, the view of the derived formula differs from the equations used when Hess’ law is applied to the thermodynamic parameters of interdependent reactions. The only case when the Hess’ law has the same analytical expression for both information-entropy and thermodynamic parameters is the isomegethic set of chemical reactions, viz. the system of the successive reactions, in which the size of the molecular ensemble remains constant.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.