用于运动图像脑电图分类的基于剩余注意力的混合集合投票网络

IF 1.2 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Analog Integrated Circuits and Signal Processing Pub Date : 2024-01-24 DOI:10.1007/s10470-023-02240-1
K. Jindal, R. Upadhyay, H. S. Singh
{"title":"用于运动图像脑电图分类的基于剩余注意力的混合集合投票网络","authors":"K. Jindal,&nbsp;R. Upadhyay,&nbsp;H. S. Singh","doi":"10.1007/s10470-023-02240-1","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-class motor imagery Electroencephalography (EEG) activity decoding has always been challenging for the development of Brain Computer Interface (BCI) system. Deep learning has recently emerged as a powerful approach for BCI system development using EEG activity. However, the EEG activity analysis and classification should be robust, automated and accurate. Currently, available BCI systems perform well for binary task identification whereas, multi-class classification of EEG activity for BCI applications is still a challenging task. In this work, a hybrid residual attention ensemble voting classifier model is developed for EEG-based Motor Imagery-Brain Computer Interface (MI-BCI) task classification. The Time–Frequency Representation (TFR) of the multi-class EEG activity is generated using Transient Extracting Transform. The TFR spectrogram images are input to the designed residual attention ensemble voting classifier model for training and classification purposes. The model is evaluated using different fusion strategies viz. feature-level and score-level fusion of layers. The proposed model is evaluated on two MI-BCI datasets, BCI competition IV 2a and BCI competition III 3a, yielding the highest classification accuracies of 88.14% and 93.13%, respectively. The results obtained on a large multi-class MI-BCI dataset confirm that the proposed hybrid residual attention ensemble voting classifier model significantly outperforms the conventional algorithm and achieves significantly high classification accuracy for the feature-level fusion of layers. The developed framework aids in identifying different tasks for multi-class MI-BCI EEG activity.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid ensemble voting-based residual attention network for motor imagery EEG Classification\",\"authors\":\"K. Jindal,&nbsp;R. Upadhyay,&nbsp;H. S. Singh\",\"doi\":\"10.1007/s10470-023-02240-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-class motor imagery Electroencephalography (EEG) activity decoding has always been challenging for the development of Brain Computer Interface (BCI) system. Deep learning has recently emerged as a powerful approach for BCI system development using EEG activity. However, the EEG activity analysis and classification should be robust, automated and accurate. Currently, available BCI systems perform well for binary task identification whereas, multi-class classification of EEG activity for BCI applications is still a challenging task. In this work, a hybrid residual attention ensemble voting classifier model is developed for EEG-based Motor Imagery-Brain Computer Interface (MI-BCI) task classification. The Time–Frequency Representation (TFR) of the multi-class EEG activity is generated using Transient Extracting Transform. The TFR spectrogram images are input to the designed residual attention ensemble voting classifier model for training and classification purposes. The model is evaluated using different fusion strategies viz. feature-level and score-level fusion of layers. The proposed model is evaluated on two MI-BCI datasets, BCI competition IV 2a and BCI competition III 3a, yielding the highest classification accuracies of 88.14% and 93.13%, respectively. The results obtained on a large multi-class MI-BCI dataset confirm that the proposed hybrid residual attention ensemble voting classifier model significantly outperforms the conventional algorithm and achieves significantly high classification accuracy for the feature-level fusion of layers. The developed framework aids in identifying different tasks for multi-class MI-BCI EEG activity.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-023-02240-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-023-02240-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 多类运动图像脑电图(EEG)活动解码一直是开发脑计算机接口(BCI)系统的挑战。最近,深度学习已成为利用脑电活动开发 BCI 系统的一种强大方法。然而,脑电活动分析和分类应该是稳健、自动化和准确的。目前,现有的 BCI 系统在二元任务识别方面表现出色,而用于 BCI 应用的脑电活动多类分类仍是一项具有挑战性的任务。在这项工作中,为基于脑电图的运动图像-脑计算机接口(MI-BCI)任务分类开发了一种混合剩余注意力集合投票分类器模型。使用瞬态提取变换生成多类脑电图活动的时频表示(TFR)。TFR 频谱图像被输入到设计的剩余注意力集合投票分类器模型中,用于训练和分类。该模型采用不同的融合策略进行评估,即特征层融合和分数层融合。所提出的模型在两个 MI-BCI 数据集(BCI 竞赛 IV 2a 和 BCI 竞赛 III 3a)上进行了评估,分类准确率分别达到最高的 88.14% 和 93.13%。在大型多类 MI-BCI 数据集上获得的结果证实,所提出的混合剩余注意力集合投票分类器模型的性能明显优于传统算法,并在特征层融合方面取得了显著的高分类准确率。所开发的框架有助于确定多类 MI-BCI 脑电图活动的不同任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid ensemble voting-based residual attention network for motor imagery EEG Classification

Multi-class motor imagery Electroencephalography (EEG) activity decoding has always been challenging for the development of Brain Computer Interface (BCI) system. Deep learning has recently emerged as a powerful approach for BCI system development using EEG activity. However, the EEG activity analysis and classification should be robust, automated and accurate. Currently, available BCI systems perform well for binary task identification whereas, multi-class classification of EEG activity for BCI applications is still a challenging task. In this work, a hybrid residual attention ensemble voting classifier model is developed for EEG-based Motor Imagery-Brain Computer Interface (MI-BCI) task classification. The Time–Frequency Representation (TFR) of the multi-class EEG activity is generated using Transient Extracting Transform. The TFR spectrogram images are input to the designed residual attention ensemble voting classifier model for training and classification purposes. The model is evaluated using different fusion strategies viz. feature-level and score-level fusion of layers. The proposed model is evaluated on two MI-BCI datasets, BCI competition IV 2a and BCI competition III 3a, yielding the highest classification accuracies of 88.14% and 93.13%, respectively. The results obtained on a large multi-class MI-BCI dataset confirm that the proposed hybrid residual attention ensemble voting classifier model significantly outperforms the conventional algorithm and achieves significantly high classification accuracy for the feature-level fusion of layers. The developed framework aids in identifying different tasks for multi-class MI-BCI EEG activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
期刊最新文献
FPGA-based implementation and verification of hybrid security algorithm for NoC architecture A multiple resonant microstrip patch heart shape antenna for satellite and Wi-Fi communication Low power content addressable memory using common match line scheme for high performance processors An ultra-low power fully CMOS sub-bandgap reference in weak inversion Secure and reliable communication using memristor-based chaotic circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1