一种基于滚动剪切分析的方法,用于确定 CLT 面板在平面外荷载作用下的表观刚度和抗弯能力

IF 2.2 3区 农林科学 Q2 FORESTRY Journal of Wood Science Pub Date : 2024-01-24 DOI:10.1186/s10086-024-02121-9
Zirui Huang, Yuling Bian, Chun Ni
{"title":"一种基于滚动剪切分析的方法,用于确定 CLT 面板在平面外荷载作用下的表观刚度和抗弯能力","authors":"Zirui Huang, Yuling Bian, Chun Ni","doi":"10.1186/s10086-024-02121-9","DOIUrl":null,"url":null,"abstract":"Most of the currently employed methods, such as Gamma method and shear analogy method, to estimate the bending stiffness and bending capacity of cross-laminated timber (CLT) beams, are computationally extensive. In our previous study, a rolling shear analysis (RSA)-based method, which simplifies the calculation, was developed to determine the shearing capacity of CLT beams. In the present study, the authors expand upon the RSA method to determine the apparent stiffness and bending capacity of 3- and 5-layer CLT beams. By considering the shear deformation of cross layers, simplified formulas to determine the apparent bending stiffness of CLT beam was derived. Two schemes to determine the CLT bending capacity were proposed. One is based on the shear stress analysis, and the other is based on the formula specified in Canadian standard, CSA O86, by replacing the effective stiffness with the apparent stiffness. Test results from the authors and the other researchers were adopted to validate the method. The findings showed that the RSA method, using the apparent stiffness obtained from the proposed method along with the bending capacity formula in CSA O86, can provide a simpler and more reliable estimation of the apparent bending stiffness and bending capacity of CLT beams as compared to the Gamma method and shear analogy method.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"29 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rolling shear analysis-based method for determining the apparent stiffness and bending capacity of CLT panel under out-of-plane load\",\"authors\":\"Zirui Huang, Yuling Bian, Chun Ni\",\"doi\":\"10.1186/s10086-024-02121-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the currently employed methods, such as Gamma method and shear analogy method, to estimate the bending stiffness and bending capacity of cross-laminated timber (CLT) beams, are computationally extensive. In our previous study, a rolling shear analysis (RSA)-based method, which simplifies the calculation, was developed to determine the shearing capacity of CLT beams. In the present study, the authors expand upon the RSA method to determine the apparent stiffness and bending capacity of 3- and 5-layer CLT beams. By considering the shear deformation of cross layers, simplified formulas to determine the apparent bending stiffness of CLT beam was derived. Two schemes to determine the CLT bending capacity were proposed. One is based on the shear stress analysis, and the other is based on the formula specified in Canadian standard, CSA O86, by replacing the effective stiffness with the apparent stiffness. Test results from the authors and the other researchers were adopted to validate the method. The findings showed that the RSA method, using the apparent stiffness obtained from the proposed method along with the bending capacity formula in CSA O86, can provide a simpler and more reliable estimation of the apparent bending stiffness and bending capacity of CLT beams as compared to the Gamma method and shear analogy method.\",\"PeriodicalId\":17664,\"journal\":{\"name\":\"Journal of Wood Science\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1186/s10086-024-02121-9\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s10086-024-02121-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

目前使用的大多数方法,如伽马法和剪切类比法,用于估算交叉层压木材(CLT)梁的弯曲刚度和弯曲承载力,计算量都很大。在我们之前的研究中,开发了一种基于滚动剪切分析 (RSA) 的方法来确定 CLT 梁的抗剪能力,该方法简化了计算。在本研究中,作者扩展了 RSA 方法,以确定 3 层和 5 层 CLT 梁的表观刚度和抗弯能力。通过考虑交叉层的剪切变形,得出了确定 CLT 梁表观弯曲刚度的简化公式。提出了两种确定 CLT 抗弯承载力的方案。一种是基于剪应力分析,另一种是基于加拿大标准 CSA O86 中规定的公式,用表观刚度代替有效刚度。采用作者和其他研究人员的测试结果对该方法进行了验证。研究结果表明,与伽马法和剪力类比法相比,RSA 法使用从拟议方法中获得的表观刚度和 CSA O86 中的抗弯承载力公式,可以更简单、更可靠地估算 CLT 梁的表观抗弯刚度和抗弯承载力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A rolling shear analysis-based method for determining the apparent stiffness and bending capacity of CLT panel under out-of-plane load
Most of the currently employed methods, such as Gamma method and shear analogy method, to estimate the bending stiffness and bending capacity of cross-laminated timber (CLT) beams, are computationally extensive. In our previous study, a rolling shear analysis (RSA)-based method, which simplifies the calculation, was developed to determine the shearing capacity of CLT beams. In the present study, the authors expand upon the RSA method to determine the apparent stiffness and bending capacity of 3- and 5-layer CLT beams. By considering the shear deformation of cross layers, simplified formulas to determine the apparent bending stiffness of CLT beam was derived. Two schemes to determine the CLT bending capacity were proposed. One is based on the shear stress analysis, and the other is based on the formula specified in Canadian standard, CSA O86, by replacing the effective stiffness with the apparent stiffness. Test results from the authors and the other researchers were adopted to validate the method. The findings showed that the RSA method, using the apparent stiffness obtained from the proposed method along with the bending capacity formula in CSA O86, can provide a simpler and more reliable estimation of the apparent bending stiffness and bending capacity of CLT beams as compared to the Gamma method and shear analogy method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Wood Science
Journal of Wood Science 工程技术-材料科学:纸与木材
CiteScore
5.40
自引率
10.30%
发文量
57
审稿时长
6 months
期刊介绍: The Journal of Wood Science is the official journal of the Japan Wood Research Society. This journal provides an international forum for the exchange of knowledge and the discussion of current issues in wood and its utilization. The journal publishes original articles on basic and applied research dealing with the science, technology, and engineering of wood, wood components, wood and wood-based products, and wood constructions. Articles concerned with pulp and paper, fiber resources from non-woody plants, wood-inhabiting insects and fungi, wood biomass, and environmental and ecological issues in forest products are also included. In addition to original articles, the journal publishes review articles on selected topics concerning wood science and related fields. The editors welcome the submission of manuscripts from any country.
期刊最新文献
Fracture predictions in impact three-point bending test of European beech Synthesis of condensed tannin model compounds regioselectively labeled with a 13C-stable isotope Mechanical properties of branch and stem wood for two Mediterranean cultivars of olive tree Effects of moisture content on the behaviour of Scots pine heartwood and sapwood under impact Chemical changes of polysaccharides in heat-treated European beech wood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1