在容器集群中联合自动扩展容器和虚拟机以优化成本

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-01-23 DOI:10.1007/s10723-023-09732-4
{"title":"在容器集群中联合自动扩展容器和虚拟机以优化成本","authors":"","doi":"10.1007/s10723-023-09732-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Autoscaling enables container cluster orchestrators to automatically adjust computational resources, such as containers and Virtual Machines (VMs), to handle fluctuating workloads effectively. This adaptation can involve modifying the amount of resources (horizontal scaling) or adjusting their computational capacity (vertical scaling). The motivation for our work stems from the limitations of previous autoscaling approaches, which are either partial (scaling containers or VMs, but not both) or excessively complex to be used in real systems. This complexity arises from their use of models with a large number of variables and the addressing of two simultaneous challenges: achieving the optimal deployment for a single scheduling window and managing the transition between successive scheduling windows. We propose an Integer Linear Programming (ILP) model to address the challenge of autoscaling containers and VMs jointly, both horizontally and vertically, to minimize deployment costs. This model is designed to be used with predictive autoscalers and be solved in a reasonable time, even for large clusters. To this end, improvements and reasonable simplifications with respect to previous models have been carried out to drastically reduce the size of the resource allocation problem. Furthermore, the proposed model provides an enhanced representation of system performance in comparison to previous approaches. A tool called Conlloovia has been developed to implement this model. To evaluate its performance, we have conducted a comprehensive assessment, comparing it with two heuristic allocators with different problem sizes. Our findings indicate that Conlloovia consistently demonstrates lower deployment costs in a significant number of cases. Conlloovia has also been evaluated with a real application, using synthetic and real workload traces, as well as different scheduling windows, with deployment costs approximately 20% lower than heuristic allocators.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Autoscaling of Containers and Virtual Machines for Cost Optimization in Container Clusters\",\"authors\":\"\",\"doi\":\"10.1007/s10723-023-09732-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Autoscaling enables container cluster orchestrators to automatically adjust computational resources, such as containers and Virtual Machines (VMs), to handle fluctuating workloads effectively. This adaptation can involve modifying the amount of resources (horizontal scaling) or adjusting their computational capacity (vertical scaling). The motivation for our work stems from the limitations of previous autoscaling approaches, which are either partial (scaling containers or VMs, but not both) or excessively complex to be used in real systems. This complexity arises from their use of models with a large number of variables and the addressing of two simultaneous challenges: achieving the optimal deployment for a single scheduling window and managing the transition between successive scheduling windows. We propose an Integer Linear Programming (ILP) model to address the challenge of autoscaling containers and VMs jointly, both horizontally and vertically, to minimize deployment costs. This model is designed to be used with predictive autoscalers and be solved in a reasonable time, even for large clusters. To this end, improvements and reasonable simplifications with respect to previous models have been carried out to drastically reduce the size of the resource allocation problem. Furthermore, the proposed model provides an enhanced representation of system performance in comparison to previous approaches. A tool called Conlloovia has been developed to implement this model. To evaluate its performance, we have conducted a comprehensive assessment, comparing it with two heuristic allocators with different problem sizes. Our findings indicate that Conlloovia consistently demonstrates lower deployment costs in a significant number of cases. Conlloovia has also been evaluated with a real application, using synthetic and real workload traces, as well as different scheduling windows, with deployment costs approximately 20% lower than heuristic allocators.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10723-023-09732-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-023-09732-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要 自动扩展使容器集群协调器能够自动调整计算资源,如容器和虚拟机(VM),以有效处理波动的工作负载。这种调整可能涉及修改资源数量(水平扩展)或调整其计算能力(垂直扩展)。我们工作的动机源于以往自动缩放方法的局限性,这些方法要么是片面的(缩放容器或虚拟机,但不能同时缩放两者),要么过于复杂,难以在实际系统中使用。造成这种复杂性的原因是,这些方法使用了包含大量变量的模型,并且需要同时应对两个挑战:实现单个调度窗口的最优部署,以及管理连续调度窗口之间的过渡。我们提出了一个整数线性规划(ILP)模型,以解决横向和纵向联合自动扩展容器和虚拟机的难题,从而最大限度地降低部署成本。该模型旨在与预测性自动缩放器一起使用,并在合理的时间内求解,即使对于大型集群也是如此。为此,我们对以前的模型进行了改进和合理简化,大大缩小了资源分配问题的规模。此外,与以前的方法相比,所提出的模型增强了对系统性能的表示。为实现这一模型,我们开发了一个名为 Conlloovia 的工具。为了评估其性能,我们进行了一次全面评估,将其与两个问题规模不同的启发式分配器进行了比较。我们的研究结果表明,Conlloovia 在相当多的情况下始终表现出较低的部署成本。Conlloovia 还通过真实应用进行了评估,使用了合成和真实工作负载跟踪以及不同的调度窗口,其部署成本比启发式分配器低约 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Autoscaling of Containers and Virtual Machines for Cost Optimization in Container Clusters

Abstract

Autoscaling enables container cluster orchestrators to automatically adjust computational resources, such as containers and Virtual Machines (VMs), to handle fluctuating workloads effectively. This adaptation can involve modifying the amount of resources (horizontal scaling) or adjusting their computational capacity (vertical scaling). The motivation for our work stems from the limitations of previous autoscaling approaches, which are either partial (scaling containers or VMs, but not both) or excessively complex to be used in real systems. This complexity arises from their use of models with a large number of variables and the addressing of two simultaneous challenges: achieving the optimal deployment for a single scheduling window and managing the transition between successive scheduling windows. We propose an Integer Linear Programming (ILP) model to address the challenge of autoscaling containers and VMs jointly, both horizontally and vertically, to minimize deployment costs. This model is designed to be used with predictive autoscalers and be solved in a reasonable time, even for large clusters. To this end, improvements and reasonable simplifications with respect to previous models have been carried out to drastically reduce the size of the resource allocation problem. Furthermore, the proposed model provides an enhanced representation of system performance in comparison to previous approaches. A tool called Conlloovia has been developed to implement this model. To evaluate its performance, we have conducted a comprehensive assessment, comparing it with two heuristic allocators with different problem sizes. Our findings indicate that Conlloovia consistently demonstrates lower deployment costs in a significant number of cases. Conlloovia has also been evaluated with a real application, using synthetic and real workload traces, as well as different scheduling windows, with deployment costs approximately 20% lower than heuristic allocators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1