核糖体蛋白基因突变诱导过氧化氢酶在酿酒酵母中过度表达。

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY FEMS yeast research Pub Date : 2024-01-09 DOI:10.1093/femsyr/foae005
Ching-Hsiang Hsu, Ching-Yu Liu, Kai-Yin Lo
{"title":"核糖体蛋白基因突变诱导过氧化氢酶在酿酒酵母中过度表达。","authors":"Ching-Hsiang Hsu, Ching-Yu Liu, Kai-Yin Lo","doi":"10.1093/femsyr/foae005","DOIUrl":null,"url":null,"abstract":"<p><p>Ribosome assembly defects result in ribosomopathies, primarily caused by inadequate protein synthesis and induced oxidative stress. This study aimed to investigate the link between deleting one ribosomal protein gene (RPG) paralog and oxidative stress response. Our results indicated that RPG mutants exhibited higher oxidant sensitivity than the wild type (WT). The concentrations of H2O2 were increased in the RPG mutants. Catalase and superoxide dismutase (SOD) activities were generally higher at the stationary phase, with catalase showing particularly elevated activity in the RPG mutants. While both catalase genes, CTT1 and CTA1, consistently exhibited higher transcription in RPG mutants, Ctt1 primarily contributed to the increased catalase activity. Stress-response transcription factors Msn2, Msn4, and Hog1 played a role in regulating these processes. Previous studies have demonstrated that H2O2 can cleave 25S rRNA via the Fenton reaction, enhancing ribosomes' ability to translate mRNAs associated with oxidative stress-related genes. The cleavage of 25S rRNA was consistently more pronounced, and the translation efficiency of CTT1 and CTA1 mRNAs was altered in RPG mutants. Our results provide evidence that the mutations in RPGs increase H2O2 levels in vivo and elevate catalase expression through both transcriptional and translational controls.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855018/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mutations of ribosomal protein genes induce overexpression of catalase in Saccharomyces cerevisiae.\",\"authors\":\"Ching-Hsiang Hsu, Ching-Yu Liu, Kai-Yin Lo\",\"doi\":\"10.1093/femsyr/foae005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ribosome assembly defects result in ribosomopathies, primarily caused by inadequate protein synthesis and induced oxidative stress. This study aimed to investigate the link between deleting one ribosomal protein gene (RPG) paralog and oxidative stress response. Our results indicated that RPG mutants exhibited higher oxidant sensitivity than the wild type (WT). The concentrations of H2O2 were increased in the RPG mutants. Catalase and superoxide dismutase (SOD) activities were generally higher at the stationary phase, with catalase showing particularly elevated activity in the RPG mutants. While both catalase genes, CTT1 and CTA1, consistently exhibited higher transcription in RPG mutants, Ctt1 primarily contributed to the increased catalase activity. Stress-response transcription factors Msn2, Msn4, and Hog1 played a role in regulating these processes. Previous studies have demonstrated that H2O2 can cleave 25S rRNA via the Fenton reaction, enhancing ribosomes' ability to translate mRNAs associated with oxidative stress-related genes. The cleavage of 25S rRNA was consistently more pronounced, and the translation efficiency of CTT1 and CTA1 mRNAs was altered in RPG mutants. Our results provide evidence that the mutations in RPGs increase H2O2 levels in vivo and elevate catalase expression through both transcriptional and translational controls.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855018/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foae005\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核糖体组装缺陷导致核糖体病,主要是由蛋白质合成不足和诱发氧化应激引起的。本研究旨在探讨一个核糖体蛋白基因(RPG)旁系基因的缺失与氧化应激反应之间的联系。结果表明,与野生型(WT)相比,RPG 突变体表现出更高的氧化应激敏感性。RPG 突变体的 H2O2 浓度增加。过氧化氢酶和超氧化物歧化酶(SOD)的活性在静止期普遍较高,过氧化氢酶在 RPG 突变体中的活性尤其高。虽然过氧化氢酶基因 CTT1 和 CTA1 在 RPG 突变体中都表现出较高的转录,但过氧化氢酶活性的提高主要是由 Ctt1 引起的。应激反应转录因子Msn2、Msn4和Hog1在调节这些过程中发挥了作用。先前的研究表明,H2O2 可通过芬顿反应裂解 25S rRNA,从而增强核糖体翻译与氧化应激相关基因有关的 mRNA 的能力。在 RPG 突变体中,25S rRNA 的裂解一直比较明显,CTT1 和 CTA1 mRNA 的翻译效率也发生了改变。我们的研究结果提供了证据,表明 RPG 的突变会增加体内 H2O2 水平,并通过转录和翻译控制提高过氧化氢酶的表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mutations of ribosomal protein genes induce overexpression of catalase in Saccharomyces cerevisiae.

Ribosome assembly defects result in ribosomopathies, primarily caused by inadequate protein synthesis and induced oxidative stress. This study aimed to investigate the link between deleting one ribosomal protein gene (RPG) paralog and oxidative stress response. Our results indicated that RPG mutants exhibited higher oxidant sensitivity than the wild type (WT). The concentrations of H2O2 were increased in the RPG mutants. Catalase and superoxide dismutase (SOD) activities were generally higher at the stationary phase, with catalase showing particularly elevated activity in the RPG mutants. While both catalase genes, CTT1 and CTA1, consistently exhibited higher transcription in RPG mutants, Ctt1 primarily contributed to the increased catalase activity. Stress-response transcription factors Msn2, Msn4, and Hog1 played a role in regulating these processes. Previous studies have demonstrated that H2O2 can cleave 25S rRNA via the Fenton reaction, enhancing ribosomes' ability to translate mRNAs associated with oxidative stress-related genes. The cleavage of 25S rRNA was consistently more pronounced, and the translation efficiency of CTT1 and CTA1 mRNAs was altered in RPG mutants. Our results provide evidence that the mutations in RPGs increase H2O2 levels in vivo and elevate catalase expression through both transcriptional and translational controls.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
期刊最新文献
A multidimensional assessment of in-host fitness costs of drug resistance in the opportunistic fungal pathogen Candida glabrata. Bridging the Gap: linking Torulaspora delbrueckii Genotypes to Fermentation Phenotypes and Wine Aroma. Phosphatidylserine synthase plays a critical role in the utilization of n-alkanes in the yeast Yarrowia lipolytica Isolation and characterisation of Saccharomyces cerevisiae mutants with increased cell wall chitin using fluorescence-activated cell sorting The potential for scotch malt whisky flavour diversification by yeast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1