{"title":"骨科中基于纳米技术的骨再生:最新趋势综述。","authors":"Wenqing Liang, Chao Zhou, Juqin Bai, Hongwei Zhang, Hengguo Long, Bo Jiang, Lu Liu, Linying Xia, Chanyi Jiang, Hengjian Zhang, Jiayi Zhao","doi":"10.2217/nnm-2023-0187","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology has revolutionized the field of bone regeneration, offering innovative solutions to address the challenges associated with conventional therapies. This comprehensive review explores the diverse landscape of nanomaterials - including nanoparticles, nanocomposites and nanofibers - tailored for bone tissue engineering. We delve into the intricate design principles, structural mimicry of native bone and the crucial role of biomaterial selection, encompassing bioceramics, polymers, metals and their hybrids. Furthermore, we analyze the interface between cells and nanostructured materials and their pivotal role in engineering and regenerating bone tissue. In the concluding outlook, we highlight emerging frontiers and potential research directions in harnessing nanomaterials for bone regeneration.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology-based bone regeneration in orthopedics: a review of recent trends.\",\"authors\":\"Wenqing Liang, Chao Zhou, Juqin Bai, Hongwei Zhang, Hengguo Long, Bo Jiang, Lu Liu, Linying Xia, Chanyi Jiang, Hengjian Zhang, Jiayi Zhao\",\"doi\":\"10.2217/nnm-2023-0187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanotechnology has revolutionized the field of bone regeneration, offering innovative solutions to address the challenges associated with conventional therapies. This comprehensive review explores the diverse landscape of nanomaterials - including nanoparticles, nanocomposites and nanofibers - tailored for bone tissue engineering. We delve into the intricate design principles, structural mimicry of native bone and the crucial role of biomaterial selection, encompassing bioceramics, polymers, metals and their hybrids. Furthermore, we analyze the interface between cells and nanostructured materials and their pivotal role in engineering and regenerating bone tissue. In the concluding outlook, we highlight emerging frontiers and potential research directions in harnessing nanomaterials for bone regeneration.</p>\",\"PeriodicalId\":74240,\"journal\":{\"name\":\"Nanomedicine (London, England)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine (London, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/nnm-2023-0187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/nnm-2023-0187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Nanotechnology-based bone regeneration in orthopedics: a review of recent trends.
Nanotechnology has revolutionized the field of bone regeneration, offering innovative solutions to address the challenges associated with conventional therapies. This comprehensive review explores the diverse landscape of nanomaterials - including nanoparticles, nanocomposites and nanofibers - tailored for bone tissue engineering. We delve into the intricate design principles, structural mimicry of native bone and the crucial role of biomaterial selection, encompassing bioceramics, polymers, metals and their hybrids. Furthermore, we analyze the interface between cells and nanostructured materials and their pivotal role in engineering and regenerating bone tissue. In the concluding outlook, we highlight emerging frontiers and potential research directions in harnessing nanomaterials for bone regeneration.