用于比较标记树的 k-Robinson-Foulds 差异度量。

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2024-04-01 Epub Date: 2024-01-25 DOI:10.1089/cmb.2023.0312
Elahe Khayatian, Gabriel Valiente, Louxin Zhang
{"title":"用于比较标记树的 k-Robinson-Foulds 差异度量。","authors":"Elahe Khayatian, Gabriel Valiente, Louxin Zhang","doi":"10.1089/cmb.2023.0312","DOIUrl":null,"url":null,"abstract":"<p><p>\n <b>Understanding the mutational history of tumor cells is a critical endeavor in unraveling the mechanisms that drive the onset and progression of cancer. Modeling tumor cell evolution with labeled trees motivates researchers to develop different measures to compare labeled trees. Although the Robinson-Foulds (RF) distance is widely used for comparing species trees, its applicability to labeled trees reveals certain limitations. This study introduces the <i>k</i>-RF dissimilarity measures, tailored to address the challenges of labeled tree comparison. The RF distance is succinctly expressed as <i>n</i>-RF in the space of labeled trees with <i>n</i> nodes. Like the RF distance, the <i>k</i>-RF is a pseudometric for multiset-labeled trees and becomes a metric in the space of 1-labeled trees. By setting <i>k</i> to a small value, the <i>k</i>-RF dissimilarity can capture analogous local regions in two labeled trees with different size or different labels.</b>\n </p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"328-344"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057537/pdf/","citationCount":"0","resultStr":"{\"title\":\"The <i>k</i>-Robinson-Foulds Dissimilarity Measures for Comparison of Labeled Trees.\",\"authors\":\"Elahe Khayatian, Gabriel Valiente, Louxin Zhang\",\"doi\":\"10.1089/cmb.2023.0312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <b>Understanding the mutational history of tumor cells is a critical endeavor in unraveling the mechanisms that drive the onset and progression of cancer. Modeling tumor cell evolution with labeled trees motivates researchers to develop different measures to compare labeled trees. Although the Robinson-Foulds (RF) distance is widely used for comparing species trees, its applicability to labeled trees reveals certain limitations. This study introduces the <i>k</i>-RF dissimilarity measures, tailored to address the challenges of labeled tree comparison. The RF distance is succinctly expressed as <i>n</i>-RF in the space of labeled trees with <i>n</i> nodes. Like the RF distance, the <i>k</i>-RF is a pseudometric for multiset-labeled trees and becomes a metric in the space of 1-labeled trees. By setting <i>k</i> to a small value, the <i>k</i>-RF dissimilarity can capture analogous local regions in two labeled trees with different size or different labels.</b>\\n </p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"328-344\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057537/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0312\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0312","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

了解肿瘤细胞的突变历史是揭示癌症发病和进展机制的关键工作。用标记树模拟肿瘤细胞的进化促使研究人员开发不同的测量方法来比较标记树。虽然罗宾逊-福尔斯(Robinson-Foulds,RF)距离被广泛用于比较物种树,但它对标记树的适用性暴露出一定的局限性。本研究引入了 k-RF 差异度量,以应对标记树比较的挑战。RF 距离在有 n 个节点的标记树空间中简洁地表示为 n-RF。与 RF 距离一样,k-RF 也是多集标签树的伪计量,在 1 个标签树的空间中成为一个度量。通过将 k 设为一个较小的值,k-RF 差异度可以捕捉到两个不同大小或不同标签的标记树中的类似局部区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The k-Robinson-Foulds Dissimilarity Measures for Comparison of Labeled Trees.

Understanding the mutational history of tumor cells is a critical endeavor in unraveling the mechanisms that drive the onset and progression of cancer. Modeling tumor cell evolution with labeled trees motivates researchers to develop different measures to compare labeled trees. Although the Robinson-Foulds (RF) distance is widely used for comparing species trees, its applicability to labeled trees reveals certain limitations. This study introduces the k-RF dissimilarity measures, tailored to address the challenges of labeled tree comparison. The RF distance is succinctly expressed as n-RF in the space of labeled trees with n nodes. Like the RF distance, the k-RF is a pseudometric for multiset-labeled trees and becomes a metric in the space of 1-labeled trees. By setting k to a small value, the k-RF dissimilarity can capture analogous local regions in two labeled trees with different size or different labels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
Advances in Estimating Level-1 Phylogenetic Networks from Unrooted SNPs. Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage. The Statistics of Parametrized Syncmers in a Simple Mutation Process Without Spurious Matches. A Hybrid GNN Approach for Improved Molecular Property Prediction. From Policy to Prediction: Assessing Forecasting Accuracy in an Integrated Framework with Machine Learning and Disease Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1