聚二氧杂蒽酮能增强大鼠股骨切除和使用 rhBMP2 重建后的骨再生。

IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING Tissue engineering. Part C, Methods Pub Date : 2024-03-01 Epub Date: 2024-01-25 DOI:10.1089/ten.tec.2023.0304
Barbara Ribeiro Rios, Stéfany Barbosa, William Phillip Pereira da Silva, Mario Jefferson Quirino Louzada, Edilson Ervolino, Eduardo C Kalil, Jamil Awad Shibli, Leonardo P Faverani
{"title":"聚二氧杂蒽酮能增强大鼠股骨切除和使用 rhBMP2 重建后的骨再生。","authors":"Barbara Ribeiro Rios, Stéfany Barbosa, William Phillip Pereira da Silva, Mario Jefferson Quirino Louzada, Edilson Ervolino, Eduardo C Kalil, Jamil Awad Shibli, Leonardo P Faverani","doi":"10.1089/ten.tec.2023.0304","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to assess the bone regeneration potential of a polydioxanone (PDO) scaffold together with recombinant human bone morphogenetic protein-2 (rhBMP-2) for the reconstruction of large bone defect. In total, 24 male rats (6 months old) were subjected to bilateral femoral stabilization using titanium plates to create a 2 mm gap, and reconstruction using rhBMP-2 (Infuse<sup>®</sup>; 3.25 μg). The bone defects were covered with PDO (PDO group), or with titanium mesh (Ti group). Animals were euthanized on days 14 and 60. Simultaneously, 16 rats received PDO and Ti in their dorsum for the purpose of biocompatibility analysis at 3, 5, 7, and 10 days postoperatively. X-ray densitometry showed a higher density in the PDO group on day 14. On day 60, coverage of the bone defect with PDO showed a larger quantity of newly formed bone than that found for the Ti group, a lower inflammatory infiltrate value, and a more significant number of blood vessels on day 14. By immunohistochemical assessment, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) showed higher labeling on day 14 in the PDO group. On day 60, bone morphogenetic protein-2 (BMP-2) showed higher labeling in the PDO group, whereas Ti showed higher labeling for osteoprotegerin, nuclear factor kappa B ligand-activating receptor, RUNX2, and OCN. Furthermore, biocompatibility analysis showed a higher inflammatory response in the Ti group. The PDO scaffold enhanced bone regeneration when associated with rhBMP-2 in rat femur reconstruction. Impact statement Regeneration of segmental bone defects is a difficult task, and several techniques and materials have been used. Recent advances in the production of synthetic polymers, such as polydioxanone (PDO), produced by three-dimensional printing, have shown distinct characteristics that could improve tissue regeneration even in an important bone defect. The present preclinical study showed that PDO membranes used as scaffolds to carry recombinant human bone morphogenetic protein-2 (rhBMP-2) improved bone tissue regeneration by more than 8-fold when compared with titanium mesh, suggesting that PDO membranes could be a feasible and useful material for use in guided bone regeneration. (In English, viable is only used for living creatures capable of sustaining life.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"102-112"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polydioxanone Enhances Bone Regeneration After Resection and Reconstruction of Rat Femur with rhBMP2.\",\"authors\":\"Barbara Ribeiro Rios, Stéfany Barbosa, William Phillip Pereira da Silva, Mario Jefferson Quirino Louzada, Edilson Ervolino, Eduardo C Kalil, Jamil Awad Shibli, Leonardo P Faverani\",\"doi\":\"10.1089/ten.tec.2023.0304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to assess the bone regeneration potential of a polydioxanone (PDO) scaffold together with recombinant human bone morphogenetic protein-2 (rhBMP-2) for the reconstruction of large bone defect. In total, 24 male rats (6 months old) were subjected to bilateral femoral stabilization using titanium plates to create a 2 mm gap, and reconstruction using rhBMP-2 (Infuse<sup>®</sup>; 3.25 μg). The bone defects were covered with PDO (PDO group), or with titanium mesh (Ti group). Animals were euthanized on days 14 and 60. Simultaneously, 16 rats received PDO and Ti in their dorsum for the purpose of biocompatibility analysis at 3, 5, 7, and 10 days postoperatively. X-ray densitometry showed a higher density in the PDO group on day 14. On day 60, coverage of the bone defect with PDO showed a larger quantity of newly formed bone than that found for the Ti group, a lower inflammatory infiltrate value, and a more significant number of blood vessels on day 14. By immunohistochemical assessment, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) showed higher labeling on day 14 in the PDO group. On day 60, bone morphogenetic protein-2 (BMP-2) showed higher labeling in the PDO group, whereas Ti showed higher labeling for osteoprotegerin, nuclear factor kappa B ligand-activating receptor, RUNX2, and OCN. Furthermore, biocompatibility analysis showed a higher inflammatory response in the Ti group. The PDO scaffold enhanced bone regeneration when associated with rhBMP-2 in rat femur reconstruction. Impact statement Regeneration of segmental bone defects is a difficult task, and several techniques and materials have been used. Recent advances in the production of synthetic polymers, such as polydioxanone (PDO), produced by three-dimensional printing, have shown distinct characteristics that could improve tissue regeneration even in an important bone defect. The present preclinical study showed that PDO membranes used as scaffolds to carry recombinant human bone morphogenetic protein-2 (rhBMP-2) improved bone tissue regeneration by more than 8-fold when compared with titanium mesh, suggesting that PDO membranes could be a feasible and useful material for use in guided bone regeneration. (In English, viable is only used for living creatures capable of sustaining life.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\" \",\"pages\":\"102-112\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.tec.2023.0304\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tec.2023.0304","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估聚二氧杂蒽酮(PDO)支架与重组人骨形态发生蛋白-2(rhBMP-2)在重建大面积骨缺损中的骨再生潜力。共对 24 只雄性大鼠(6 个月大)进行了双侧股骨稳定手术,使用钛板造成 2 毫米的间隙,并使用 rhBMP-2 (Infuse®;3.25 μg)进行重建。骨缺损用 PDO(PDO 组)或钛网(Ti 组)覆盖。动物在第 14 天和第 60 天安乐死。同时,16 只大鼠的背部接受了 PDO 和钛网,以便在术后 3、5、7 和 10 天进行生物相容性分析。X 射线密度测量显示,第 14 天时,PDO 组的密度更高。第 60 天,PDO 覆盖骨缺损的情况显示,与钛组相比,新形成的骨量更多,炎症浸润值更低,第 14 天的血管数量更多。通过免疫组化评估,PDO 组在第 14 天显示出更高的润相关转录因子 2(RUNX2)和骨钙素(OCN)标记。在第 60 天,PDO 组的骨形态发生蛋白-2(BMP-2)标记较高,而 Ti 组的骨保护素、核因子卡巴 B 配体激活受体、RUNX2 和 OCN 标记较高。此外,生物相容性分析表明,Ti 组的炎症反应更高。在大鼠股骨重建中,当与 rhBMP-2 结合使用时,PDO 支架可促进骨再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polydioxanone Enhances Bone Regeneration After Resection and Reconstruction of Rat Femur with rhBMP2.

The aim of this study was to assess the bone regeneration potential of a polydioxanone (PDO) scaffold together with recombinant human bone morphogenetic protein-2 (rhBMP-2) for the reconstruction of large bone defect. In total, 24 male rats (6 months old) were subjected to bilateral femoral stabilization using titanium plates to create a 2 mm gap, and reconstruction using rhBMP-2 (Infuse®; 3.25 μg). The bone defects were covered with PDO (PDO group), or with titanium mesh (Ti group). Animals were euthanized on days 14 and 60. Simultaneously, 16 rats received PDO and Ti in their dorsum for the purpose of biocompatibility analysis at 3, 5, 7, and 10 days postoperatively. X-ray densitometry showed a higher density in the PDO group on day 14. On day 60, coverage of the bone defect with PDO showed a larger quantity of newly formed bone than that found for the Ti group, a lower inflammatory infiltrate value, and a more significant number of blood vessels on day 14. By immunohistochemical assessment, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) showed higher labeling on day 14 in the PDO group. On day 60, bone morphogenetic protein-2 (BMP-2) showed higher labeling in the PDO group, whereas Ti showed higher labeling for osteoprotegerin, nuclear factor kappa B ligand-activating receptor, RUNX2, and OCN. Furthermore, biocompatibility analysis showed a higher inflammatory response in the Ti group. The PDO scaffold enhanced bone regeneration when associated with rhBMP-2 in rat femur reconstruction. Impact statement Regeneration of segmental bone defects is a difficult task, and several techniques and materials have been used. Recent advances in the production of synthetic polymers, such as polydioxanone (PDO), produced by three-dimensional printing, have shown distinct characteristics that could improve tissue regeneration even in an important bone defect. The present preclinical study showed that PDO membranes used as scaffolds to carry recombinant human bone morphogenetic protein-2 (rhBMP-2) improved bone tissue regeneration by more than 8-fold when compared with titanium mesh, suggesting that PDO membranes could be a feasible and useful material for use in guided bone regeneration. (In English, viable is only used for living creatures capable of sustaining life.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering. Part C, Methods
Tissue engineering. Part C, Methods Medicine-Medicine (miscellaneous)
CiteScore
5.10
自引率
3.30%
发文量
136
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues. Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.
期刊最新文献
An Optimized Protocol for Multiple Immunohistochemical Staining of Fragile Tissue Samples. Design of an Innovative Method for Measuring the Contractile Behavior of Engineered Tissues. Enhancing Gingival-Derived Mesenchymal Stem Cell Potential in Tissue Engineering and Regenerative Medicine Through Paraprobiotics. Simple Methodology to Score Micropattern Quality and Effectiveness. Autoinduction-Based Quantification of In Situ TGF-β Activity in Native and Engineered Cartilage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1