人工智能成像预测胶质瘤的高风险分子标记物

IF 2.4 3区 医学 Q2 CLINICAL NEUROLOGY Clinical Neuroradiology Pub Date : 2024-03-01 Epub Date: 2024-01-26 DOI:10.1007/s00062-023-01375-y
Qian Liang, Hui Jing, Yingbo Shao, Yinhua Wang, Hui Zhang
{"title":"人工智能成像预测胶质瘤的高风险分子标记物","authors":"Qian Liang, Hui Jing, Yingbo Shao, Yinhua Wang, Hui Zhang","doi":"10.1007/s00062-023-01375-y","DOIUrl":null,"url":null,"abstract":"<p><p>Gliomas, the most prevalent primary malignant tumors of the central nervous system, present significant challenges in diagnosis and prognosis. The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) published in 2021, has emphasized the role of high-risk molecular markers in gliomas. These markers are crucial for enhancing glioma grading and influencing survival and prognosis. Noninvasive prediction of these high-risk molecular markers is vital. Genetic testing after biopsy, the current standard for determining molecular type, is invasive and time-consuming. Magnetic resonance imaging (MRI) offers a non-invasive alternative, providing structural and functional insights into gliomas. Advanced MRI methods can potentially reflect the pathological characteristics associated with glioma molecular markers; however, they struggle to fully represent gliomas' high heterogeneity. Artificial intelligence (AI) imaging, capable of processing vast medical image datasets, can extract critical molecular information. AI imaging thus emerges as a noninvasive and efficient method for identifying high-risk molecular markers in gliomas, a recent focus of research. This review presents a comprehensive analysis of AI imaging's role in predicting glioma high-risk molecular markers, highlighting challenges and future directions.</p>","PeriodicalId":49298,"journal":{"name":"Clinical Neuroradiology","volume":" ","pages":"33-43"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Imaging for Predicting High-risk Molecular Markers of Gliomas.\",\"authors\":\"Qian Liang, Hui Jing, Yingbo Shao, Yinhua Wang, Hui Zhang\",\"doi\":\"10.1007/s00062-023-01375-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gliomas, the most prevalent primary malignant tumors of the central nervous system, present significant challenges in diagnosis and prognosis. The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) published in 2021, has emphasized the role of high-risk molecular markers in gliomas. These markers are crucial for enhancing glioma grading and influencing survival and prognosis. Noninvasive prediction of these high-risk molecular markers is vital. Genetic testing after biopsy, the current standard for determining molecular type, is invasive and time-consuming. Magnetic resonance imaging (MRI) offers a non-invasive alternative, providing structural and functional insights into gliomas. Advanced MRI methods can potentially reflect the pathological characteristics associated with glioma molecular markers; however, they struggle to fully represent gliomas' high heterogeneity. Artificial intelligence (AI) imaging, capable of processing vast medical image datasets, can extract critical molecular information. AI imaging thus emerges as a noninvasive and efficient method for identifying high-risk molecular markers in gliomas, a recent focus of research. This review presents a comprehensive analysis of AI imaging's role in predicting glioma high-risk molecular markers, highlighting challenges and future directions.</p>\",\"PeriodicalId\":49298,\"journal\":{\"name\":\"Clinical Neuroradiology\",\"volume\":\" \",\"pages\":\"33-43\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Neuroradiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00062-023-01375-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00062-023-01375-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胶质瘤是中枢神经系统中最常见的原发性恶性肿瘤,在诊断和预后方面面临着巨大挑战。世界卫生组织于 2021 年发布的第五版《中枢神经系统肿瘤分类》(WHO CNS5)强调了高风险分子标记物在胶质瘤中的作用。这些标志物对于加强胶质瘤分级、影响生存和预后至关重要。对这些高危分子标记物进行无创预测至关重要。活检后的基因检测是目前确定分子类型的标准,但这种检测具有侵入性且耗时。核磁共振成像(MRI)提供了一种非侵入性的替代方法,可深入了解胶质瘤的结构和功能。先进的磁共振成像方法可以潜在地反映与胶质瘤分子标记相关的病理特征;然而,这些方法难以充分体现胶质瘤的高度异质性。人工智能成像能够处理庞大的医学影像数据集,可以提取关键的分子信息。因此,人工智能成像成为一种无创、高效的方法,可用于识别胶质瘤中的高风险分子标记物,这也是近期研究的一个重点。本综述全面分析了人工智能成像在预测胶质瘤高危分子标记物方面的作用,并重点介绍了面临的挑战和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Intelligence Imaging for Predicting High-risk Molecular Markers of Gliomas.

Gliomas, the most prevalent primary malignant tumors of the central nervous system, present significant challenges in diagnosis and prognosis. The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) published in 2021, has emphasized the role of high-risk molecular markers in gliomas. These markers are crucial for enhancing glioma grading and influencing survival and prognosis. Noninvasive prediction of these high-risk molecular markers is vital. Genetic testing after biopsy, the current standard for determining molecular type, is invasive and time-consuming. Magnetic resonance imaging (MRI) offers a non-invasive alternative, providing structural and functional insights into gliomas. Advanced MRI methods can potentially reflect the pathological characteristics associated with glioma molecular markers; however, they struggle to fully represent gliomas' high heterogeneity. Artificial intelligence (AI) imaging, capable of processing vast medical image datasets, can extract critical molecular information. AI imaging thus emerges as a noninvasive and efficient method for identifying high-risk molecular markers in gliomas, a recent focus of research. This review presents a comprehensive analysis of AI imaging's role in predicting glioma high-risk molecular markers, highlighting challenges and future directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Neuroradiology
Clinical Neuroradiology CLINICAL NEUROLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.00
自引率
3.60%
发文量
106
审稿时长
>12 weeks
期刊介绍: Clinical Neuroradiology provides current information, original contributions, and reviews in the field of neuroradiology. An interdisciplinary approach is accomplished by diagnostic and therapeutic contributions related to associated subjects. The international coverage and relevance of the journal is underlined by its being the official journal of the German, Swiss, and Austrian Societies of Neuroradiology.
期刊最新文献
Longitudinal Dentate Nucleus MRI Changes in Hypertrophic Olivary Degeneration: a Case Report. Epstein-Barr Virus Encephalitis Mimicking Herpes Encephalitis On Neuroimaging: A Case Report. Non-Stenotic Carotid Plaques and Rate of DWI-positive MRI in Patients with Lower-Risk Transient or Persistent Minor Neurologic Events: DOUBT Sub Study. Hyperdense Middle Cerebral Artery Sign as a Predictor of First-Pass Recanalization and Favorable Outcomes in Direct Thrombectomy Patients. Microstructural Characteristics of Cervical Spinal Cord Using High Angular Resolution Diffusion Imaging (HARDI) and Tractography in Healthy Subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1