Janane F Rahbani, Jakub Bunk, Damien Lagarde, Bozena Samborska, Anna Roesler, Haopeng Xiao, Abhirup Shaw, Zafir Kaiser, Jessica L Braun, Mia S Geromella, Val A Fajardo, Robert A Koza, Lawrence Kazak
{"title":"UCP1 和 CKB 并行控制冷触发的脂肪细胞产热。","authors":"Janane F Rahbani, Jakub Bunk, Damien Lagarde, Bozena Samborska, Anna Roesler, Haopeng Xiao, Abhirup Shaw, Zafir Kaiser, Jessica L Braun, Mia S Geromella, Val A Fajardo, Robert A Koza, Lawrence Kazak","doi":"10.1016/j.cmet.2024.01.001","DOIUrl":null,"url":null,"abstract":"<p><p>That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1<sup>-/-</sup>). However, germline Ucp1<sup>-/-</sup> mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption. We find that, although germline Ucp1<sup>-/-</sup> mice succumb to cold-induced hypothermia with complete penetrance, most mice with the inducible deletion of Ucp1 maintain homeothermy in the cold. However, inducible adipocyte-selective co-deletion of Ucp1 and creatine kinase b (Ckb, an effector of UCP1-independent thermogenesis) exacerbates cold intolerance. Following UCP1 deletion or UCP1/CKB co-deletion from mature adipocytes, moderate cold exposure triggers the regeneration of mature brown adipocytes that coordinately restore UCP1 and CKB expression. Our findings suggest that thermogenic adipocytes utilize non-paralogous protein redundancy-through UCP1 and CKB-to promote cold-induced energy dissipation.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"526-540.e7"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel control of cold-triggered adipocyte thermogenesis by UCP1 and CKB.\",\"authors\":\"Janane F Rahbani, Jakub Bunk, Damien Lagarde, Bozena Samborska, Anna Roesler, Haopeng Xiao, Abhirup Shaw, Zafir Kaiser, Jessica L Braun, Mia S Geromella, Val A Fajardo, Robert A Koza, Lawrence Kazak\",\"doi\":\"10.1016/j.cmet.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1<sup>-/-</sup>). However, germline Ucp1<sup>-/-</sup> mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption. We find that, although germline Ucp1<sup>-/-</sup> mice succumb to cold-induced hypothermia with complete penetrance, most mice with the inducible deletion of Ucp1 maintain homeothermy in the cold. However, inducible adipocyte-selective co-deletion of Ucp1 and creatine kinase b (Ckb, an effector of UCP1-independent thermogenesis) exacerbates cold intolerance. Following UCP1 deletion or UCP1/CKB co-deletion from mature adipocytes, moderate cold exposure triggers the regeneration of mature brown adipocytes that coordinately restore UCP1 and CKB expression. Our findings suggest that thermogenic adipocytes utilize non-paralogous protein redundancy-through UCP1 and CKB-to promote cold-induced energy dissipation.</p>\",\"PeriodicalId\":93927,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":\" \",\"pages\":\"526-540.e7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2024.01.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel control of cold-triggered adipocyte thermogenesis by UCP1 and CKB.
That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1-/-). However, germline Ucp1-/- mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption. We find that, although germline Ucp1-/- mice succumb to cold-induced hypothermia with complete penetrance, most mice with the inducible deletion of Ucp1 maintain homeothermy in the cold. However, inducible adipocyte-selective co-deletion of Ucp1 and creatine kinase b (Ckb, an effector of UCP1-independent thermogenesis) exacerbates cold intolerance. Following UCP1 deletion or UCP1/CKB co-deletion from mature adipocytes, moderate cold exposure triggers the regeneration of mature brown adipocytes that coordinately restore UCP1 and CKB expression. Our findings suggest that thermogenic adipocytes utilize non-paralogous protein redundancy-through UCP1 and CKB-to promote cold-induced energy dissipation.