Jianmin Chai, Caleb P Weiss, Paul A Beck, Wei Zhao, Ying Li, Jiangchao Zhao
{"title":"日粮和莫能菌素影响存栏牛和育成牛瘤胃微生物组的时间动态。","authors":"Jianmin Chai, Caleb P Weiss, Paul A Beck, Wei Zhao, Ying Li, Jiangchao Zhao","doi":"10.1186/s40104-023-00967-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stocker cattle diet and management influence beef cattle performance during the finishing stage, but knowledge of the dynamics of the rumen microbiome associated with the host are lacking. A longitudinal study was conducted to determine how the feeding strategy from the stocker to the finishing stages of production affects the temporal dynamics of rumen microbiota. During the stocker phase, either dry hay or wheat pasture were provided, and three levels of monensin were administrated. All calves were then transported to a feedlot and received similar finishing diets with or without monensin. Rumen microbial samples were collected on d 0, 28, 85 during the stocker stage (S0, S28 and S85) and d 0, 14, 28, 56, 30 d before slaughter and the end of the trial during the finishing stage (F0, F14, F28, F56, Pre-Ba, and Final). The V4 region of the bacterial 16S rRNA gene of 263 rumen samples was sequenced.</p><p><strong>Results: </strong>Higher alpha diversity, including the number of observed bacterial features and the Shannon index, was observed in the stocker phase compared to the finishing phase. The bacterial amplicon sequence variants (ASVs) differentiating different sampling time points were identified. Dietary treatments during the stocker stage temporally impact the dynamics of rumen microbiota. For example, shared bacteria, including Bacteroidales (ASV19) and Streptococcus infantarius (ASV94), were significantly higher in hay rumen on S28, S85, and F0, while Bacteroidaceae (ASV11) and Limivicinus (ASV15) were more abundant in wheat. Monensin affected rumen microbial composition at a specific time. Transportation to feedlot significantly influenced microbiome structure and diversity in hay-fed calves. Bacterial taxa associated with body weight were classified, and core microbiotas interacted with each other during the trial.</p><p><strong>Conclusions: </strong>In summary, the temporal dynamics of the rumen microbiome in cattle at the stocker and finishing stage are influenced by multiple factors of the feeding strategy. Diet at the stocker phase may temporarily affect the microbial composition during this stage. Modulating the rumen microbiome in the steers at the stocker stage affects the microbial interactions and performance in the finishing stage.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"15 1","pages":"12"},"PeriodicalIF":6.3000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811932/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diet and monensin influence the temporal dynamics of the rumen microbiome in stocker and finishing cattle.\",\"authors\":\"Jianmin Chai, Caleb P Weiss, Paul A Beck, Wei Zhao, Ying Li, Jiangchao Zhao\",\"doi\":\"10.1186/s40104-023-00967-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Stocker cattle diet and management influence beef cattle performance during the finishing stage, but knowledge of the dynamics of the rumen microbiome associated with the host are lacking. A longitudinal study was conducted to determine how the feeding strategy from the stocker to the finishing stages of production affects the temporal dynamics of rumen microbiota. During the stocker phase, either dry hay or wheat pasture were provided, and three levels of monensin were administrated. All calves were then transported to a feedlot and received similar finishing diets with or without monensin. Rumen microbial samples were collected on d 0, 28, 85 during the stocker stage (S0, S28 and S85) and d 0, 14, 28, 56, 30 d before slaughter and the end of the trial during the finishing stage (F0, F14, F28, F56, Pre-Ba, and Final). The V4 region of the bacterial 16S rRNA gene of 263 rumen samples was sequenced.</p><p><strong>Results: </strong>Higher alpha diversity, including the number of observed bacterial features and the Shannon index, was observed in the stocker phase compared to the finishing phase. The bacterial amplicon sequence variants (ASVs) differentiating different sampling time points were identified. Dietary treatments during the stocker stage temporally impact the dynamics of rumen microbiota. For example, shared bacteria, including Bacteroidales (ASV19) and Streptococcus infantarius (ASV94), were significantly higher in hay rumen on S28, S85, and F0, while Bacteroidaceae (ASV11) and Limivicinus (ASV15) were more abundant in wheat. Monensin affected rumen microbial composition at a specific time. Transportation to feedlot significantly influenced microbiome structure and diversity in hay-fed calves. Bacterial taxa associated with body weight were classified, and core microbiotas interacted with each other during the trial.</p><p><strong>Conclusions: </strong>In summary, the temporal dynamics of the rumen microbiome in cattle at the stocker and finishing stage are influenced by multiple factors of the feeding strategy. Diet at the stocker phase may temporarily affect the microbial composition during this stage. Modulating the rumen microbiome in the steers at the stocker stage affects the microbial interactions and performance in the finishing stage.</p>\",\"PeriodicalId\":64067,\"journal\":{\"name\":\"Journal of Animal Science and Biotechnology\",\"volume\":\"15 1\",\"pages\":\"12\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811932/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Science and Biotechnology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1186/s40104-023-00967-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/s40104-023-00967-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Diet and monensin influence the temporal dynamics of the rumen microbiome in stocker and finishing cattle.
Background: Stocker cattle diet and management influence beef cattle performance during the finishing stage, but knowledge of the dynamics of the rumen microbiome associated with the host are lacking. A longitudinal study was conducted to determine how the feeding strategy from the stocker to the finishing stages of production affects the temporal dynamics of rumen microbiota. During the stocker phase, either dry hay or wheat pasture were provided, and three levels of monensin were administrated. All calves were then transported to a feedlot and received similar finishing diets with or without monensin. Rumen microbial samples were collected on d 0, 28, 85 during the stocker stage (S0, S28 and S85) and d 0, 14, 28, 56, 30 d before slaughter and the end of the trial during the finishing stage (F0, F14, F28, F56, Pre-Ba, and Final). The V4 region of the bacterial 16S rRNA gene of 263 rumen samples was sequenced.
Results: Higher alpha diversity, including the number of observed bacterial features and the Shannon index, was observed in the stocker phase compared to the finishing phase. The bacterial amplicon sequence variants (ASVs) differentiating different sampling time points were identified. Dietary treatments during the stocker stage temporally impact the dynamics of rumen microbiota. For example, shared bacteria, including Bacteroidales (ASV19) and Streptococcus infantarius (ASV94), were significantly higher in hay rumen on S28, S85, and F0, while Bacteroidaceae (ASV11) and Limivicinus (ASV15) were more abundant in wheat. Monensin affected rumen microbial composition at a specific time. Transportation to feedlot significantly influenced microbiome structure and diversity in hay-fed calves. Bacterial taxa associated with body weight were classified, and core microbiotas interacted with each other during the trial.
Conclusions: In summary, the temporal dynamics of the rumen microbiome in cattle at the stocker and finishing stage are influenced by multiple factors of the feeding strategy. Diet at the stocker phase may temporarily affect the microbial composition during this stage. Modulating the rumen microbiome in the steers at the stocker stage affects the microbial interactions and performance in the finishing stage.