在超声图像上区分甲状腺结节良性和恶性的深度学习诊断性能和视觉洞察力。

IF 2.8 4区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Experimental Biology and Medicine Pub Date : 2023-12-01 Epub Date: 2024-01-26 DOI:10.1177/15353702231220664
Yujiang Liu, Ying Feng, Linxue Qian, Zhixiang Wang, Xiangdong Hu
{"title":"在超声图像上区分甲状腺结节良性和恶性的深度学习诊断性能和视觉洞察力。","authors":"Yujiang Liu, Ying Feng, Linxue Qian, Zhixiang Wang, Xiangdong Hu","doi":"10.1177/15353702231220664","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to construct and evaluate a deep learning model, utilizing ultrasound images, to accurately differentiate benign and malignant thyroid nodules. The objective includes visualizing the model's process for interpretability and comparing its diagnostic precision with a cohort of 80 radiologists. We employed ResNet as the classification backbone for thyroid nodule prediction. The model was trained using 2096 ultrasound images of 655 distinct thyroid nodules. For performance evaluation, an independent test set comprising 100 cases of thyroid nodules was curated. In addition, to demonstrate the superiority of the artificial intelligence (AI) model over radiologists, a Turing test was conducted with 80 radiologists of varying clinical experience. This was meant to assess which group of radiologists' conclusions were in closer alignment with AI predictions. Furthermore, to highlight the interpretability of the AI model, gradient-weighted class activation mapping (Grad-CAM) was employed to visualize the model's areas of focus during its prediction process. In this cohort, AI diagnostics demonstrated a sensitivity of 81.67%, a specificity of 60%, and an overall diagnostic accuracy of 73%. In comparison, the panel of radiologists on average exhibited a diagnostic accuracy of 62.9%. The AI's diagnostic process was significantly faster than that of the radiologists. The generated heat-maps highlighted the model's focus on areas characterized by calcification, solid echo and higher echo intensity, suggesting these areas might be indicative of malignant thyroid nodules. Our study supports the notion that deep learning can be a valuable diagnostic tool with comparable accuracy to experienced senior radiologists in the diagnosis of malignant thyroid nodules. The interpretability of the AI model's process suggests that it could be clinically meaningful. Further studies are necessary to improve diagnostic accuracy and support auxiliary diagnoses in primary care settings.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":" ","pages":"2538-2546"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854474/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning diagnostic performance and visual insights in differentiating benign and malignant thyroid nodules on ultrasound images.\",\"authors\":\"Yujiang Liu, Ying Feng, Linxue Qian, Zhixiang Wang, Xiangdong Hu\",\"doi\":\"10.1177/15353702231220664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to construct and evaluate a deep learning model, utilizing ultrasound images, to accurately differentiate benign and malignant thyroid nodules. The objective includes visualizing the model's process for interpretability and comparing its diagnostic precision with a cohort of 80 radiologists. We employed ResNet as the classification backbone for thyroid nodule prediction. The model was trained using 2096 ultrasound images of 655 distinct thyroid nodules. For performance evaluation, an independent test set comprising 100 cases of thyroid nodules was curated. In addition, to demonstrate the superiority of the artificial intelligence (AI) model over radiologists, a Turing test was conducted with 80 radiologists of varying clinical experience. This was meant to assess which group of radiologists' conclusions were in closer alignment with AI predictions. Furthermore, to highlight the interpretability of the AI model, gradient-weighted class activation mapping (Grad-CAM) was employed to visualize the model's areas of focus during its prediction process. In this cohort, AI diagnostics demonstrated a sensitivity of 81.67%, a specificity of 60%, and an overall diagnostic accuracy of 73%. In comparison, the panel of radiologists on average exhibited a diagnostic accuracy of 62.9%. The AI's diagnostic process was significantly faster than that of the radiologists. The generated heat-maps highlighted the model's focus on areas characterized by calcification, solid echo and higher echo intensity, suggesting these areas might be indicative of malignant thyroid nodules. Our study supports the notion that deep learning can be a valuable diagnostic tool with comparable accuracy to experienced senior radiologists in the diagnosis of malignant thyroid nodules. The interpretability of the AI model's process suggests that it could be clinically meaningful. Further studies are necessary to improve diagnostic accuracy and support auxiliary diagnoses in primary care settings.</p>\",\"PeriodicalId\":12163,\"journal\":{\"name\":\"Experimental Biology and Medicine\",\"volume\":\" \",\"pages\":\"2538-2546\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15353702231220664\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15353702231220664","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用超声图像构建和评估一个深度学习模型,以准确区分良性和恶性甲状腺结节。目标包括可视化模型的可解释性过程,并将其诊断精度与 80 名放射科医生进行比较。我们采用 ResNet 作为甲状腺结节预测的分类骨干。该模型使用 2096 幅 655 个不同甲状腺结节的超声图像进行训练。为了进行性能评估,我们策划了一个由 100 例甲状腺结节组成的独立测试集。此外,为了证明人工智能(AI)模型优于放射科医生,还对 80 名具有不同临床经验的放射科医生进行了图灵测试。这旨在评估哪一组放射科医生的结论与人工智能预测更接近。此外,为了突出人工智能模型的可解释性,还采用了梯度加权类激活图谱(Grad-CAM)来可视化模型在预测过程中的重点区域。在该队列中,人工智能诊断的灵敏度为 81.67%,特异度为 60%,总体诊断准确率为 73%。相比之下,放射科专家小组的平均诊断准确率为 62.9%。人工智能的诊断过程明显快于放射科医生。生成的热图突出显示了模型对以钙化、实心回声和较高回声强度为特征的区域的关注,表明这些区域可能是恶性甲状腺结节的标志。我们的研究支持这样一种观点,即深度学习可以作为一种有价值的诊断工具,在诊断恶性甲状腺结节方面具有与经验丰富的资深放射科医生相当的准确性。人工智能模型过程的可解释性表明它可能具有临床意义。有必要开展进一步研究,以提高诊断准确性并支持初级医疗环境中的辅助诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning diagnostic performance and visual insights in differentiating benign and malignant thyroid nodules on ultrasound images.

This study aims to construct and evaluate a deep learning model, utilizing ultrasound images, to accurately differentiate benign and malignant thyroid nodules. The objective includes visualizing the model's process for interpretability and comparing its diagnostic precision with a cohort of 80 radiologists. We employed ResNet as the classification backbone for thyroid nodule prediction. The model was trained using 2096 ultrasound images of 655 distinct thyroid nodules. For performance evaluation, an independent test set comprising 100 cases of thyroid nodules was curated. In addition, to demonstrate the superiority of the artificial intelligence (AI) model over radiologists, a Turing test was conducted with 80 radiologists of varying clinical experience. This was meant to assess which group of radiologists' conclusions were in closer alignment with AI predictions. Furthermore, to highlight the interpretability of the AI model, gradient-weighted class activation mapping (Grad-CAM) was employed to visualize the model's areas of focus during its prediction process. In this cohort, AI diagnostics demonstrated a sensitivity of 81.67%, a specificity of 60%, and an overall diagnostic accuracy of 73%. In comparison, the panel of radiologists on average exhibited a diagnostic accuracy of 62.9%. The AI's diagnostic process was significantly faster than that of the radiologists. The generated heat-maps highlighted the model's focus on areas characterized by calcification, solid echo and higher echo intensity, suggesting these areas might be indicative of malignant thyroid nodules. Our study supports the notion that deep learning can be a valuable diagnostic tool with comparable accuracy to experienced senior radiologists in the diagnosis of malignant thyroid nodules. The interpretability of the AI model's process suggests that it could be clinically meaningful. Further studies are necessary to improve diagnostic accuracy and support auxiliary diagnoses in primary care settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Biology and Medicine
Experimental Biology and Medicine 医学-医学:研究与实验
CiteScore
6.00
自引率
0.00%
发文量
157
审稿时长
1 months
期刊介绍: Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population. Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.
期刊最新文献
STEMIN and YAP5SA, the future of heart repair? Fructose metabolism is unregulated in cancers and placentae. Subunit-specific mechanisms of isoflurane-induced acute tonic inhibition in dentate gyrus granule neuron. Quantitative characterization of retinal features in translated OCTA. Exosomal circPTPRK promotes angiogenesis after radiofrequency ablation in hepatocellular carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1