Sophia Baker, Thanh Khoa Nguyen, Rebecca A Wingert
{"title":"肾小管纤毛细胞发育的尾巴:斑马鱼功能性组织屏障模式化的启示。","authors":"Sophia Baker, Thanh Khoa Nguyen, Rebecca A Wingert","doi":"10.1080/21688370.2024.2309025","DOIUrl":null,"url":null,"abstract":"<p><p>Cilia are hair-like structures found on the surface of nearly all vertebrate cell types where they have central roles in regulating development and orchestrating physiological events. There is growing interest in understanding the mechanisms of ciliogenesis due to the profound consequences that follow from the absence of proper ciliary function, which include diseases that affect the renal, respiratory, reproductive, nervous, visual, and digestive systems, among others. Now, a recent report has discerned new roles for the transcription factor <i>estrogen-related receptor gamma a</i> (<i>esrrγa)</i> in ciliated cell ontogeny within the embryonic zebrafish kidney and other tissues. Further, the team of researchers discovered that genetic ablation of murine homolog ERRγ in adult kidney epithelial cells led to shortened cilia, which precedes cystogenesis. These intriguing findings expand our fundamental understanding of the pathological basis of cilia defects, which is relevant for identifying future therapeutic targets for ciliopathies.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tails of nephron ciliated cell development: insights on patterning a functional tissue barrier from the zebrafish.\",\"authors\":\"Sophia Baker, Thanh Khoa Nguyen, Rebecca A Wingert\",\"doi\":\"10.1080/21688370.2024.2309025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cilia are hair-like structures found on the surface of nearly all vertebrate cell types where they have central roles in regulating development and orchestrating physiological events. There is growing interest in understanding the mechanisms of ciliogenesis due to the profound consequences that follow from the absence of proper ciliary function, which include diseases that affect the renal, respiratory, reproductive, nervous, visual, and digestive systems, among others. Now, a recent report has discerned new roles for the transcription factor <i>estrogen-related receptor gamma a</i> (<i>esrrγa)</i> in ciliated cell ontogeny within the embryonic zebrafish kidney and other tissues. Further, the team of researchers discovered that genetic ablation of murine homolog ERRγ in adult kidney epithelial cells led to shortened cilia, which precedes cystogenesis. These intriguing findings expand our fundamental understanding of the pathological basis of cilia defects, which is relevant for identifying future therapeutic targets for ciliopathies.</p>\",\"PeriodicalId\":23469,\"journal\":{\"name\":\"Tissue Barriers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Barriers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21688370.2024.2309025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2024.2309025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Tails of nephron ciliated cell development: insights on patterning a functional tissue barrier from the zebrafish.
Cilia are hair-like structures found on the surface of nearly all vertebrate cell types where they have central roles in regulating development and orchestrating physiological events. There is growing interest in understanding the mechanisms of ciliogenesis due to the profound consequences that follow from the absence of proper ciliary function, which include diseases that affect the renal, respiratory, reproductive, nervous, visual, and digestive systems, among others. Now, a recent report has discerned new roles for the transcription factor estrogen-related receptor gamma a (esrrγa) in ciliated cell ontogeny within the embryonic zebrafish kidney and other tissues. Further, the team of researchers discovered that genetic ablation of murine homolog ERRγ in adult kidney epithelial cells led to shortened cilia, which precedes cystogenesis. These intriguing findings expand our fundamental understanding of the pathological basis of cilia defects, which is relevant for identifying future therapeutic targets for ciliopathies.
期刊介绍:
Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.