Pierfrancesco Alaimo Di Loro, Marco Mingione, Jonah Lipsitt, Christina M Batteate, Michael Jerrett, Sudipto Banerjee
{"title":"对来自可穿戴设备的动作图数据进行贝叶斯分层建模和分析。","authors":"Pierfrancesco Alaimo Di Loro, Marco Mingione, Jonah Lipsitt, Christina M Batteate, Michael Jerrett, Sudipto Banerjee","doi":"10.1214/23-aoas1742","DOIUrl":null,"url":null,"abstract":"<p><p>The majority of Americans fail to achieve recommended levels of physical activity, which leads to numerous preventable health problems such as diabetes, hypertension, and heart diseases. This has generated substantial interest in monitoring human activity to gear interventions toward environmental features that may relate to higher physical activity. Wearable devices, such as wrist-worn sensors that monitor gross motor activity (actigraph units) continuously record the activity levels of a subject, producing massive amounts of high-resolution measurements. Analyzing actigraph data needs to account for spatial and temporal information on trajectories or paths traversed by subjects wearing such devices. Inferential objectives include estimating a subject's physical activity levels along a given trajectory; identifying trajectories that are more likely to produce higher levels of physical activity for a given subject; and predicting expected levels of physical activity in any proposed new trajectory for a given set of health attributes. Here, we devise a Bayesian hierarchical modeling framework for spatial-temporal actigraphy data to deliver fully model-based inference on trajectories while accounting for subject-level health attributes and spatial-temporal dependencies. We undertake a comprehensive analysis of an original dataset from the Physical Activity through Sustainable Transport Approaches in Los Angeles (PASTA-LA) study to ascertain spatial zones and trajectories exhibiting significantly higher levels of physical activity while accounting for various sources of heterogeneity.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 4","pages":"2865-2886"},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815935/pdf/","citationCount":"0","resultStr":"{\"title\":\"BAYESIAN HIERARCHICAL MODELING AND ANALYSIS FOR ACTIGRAPH DATA FROM WEARABLE DEVICES.\",\"authors\":\"Pierfrancesco Alaimo Di Loro, Marco Mingione, Jonah Lipsitt, Christina M Batteate, Michael Jerrett, Sudipto Banerjee\",\"doi\":\"10.1214/23-aoas1742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The majority of Americans fail to achieve recommended levels of physical activity, which leads to numerous preventable health problems such as diabetes, hypertension, and heart diseases. This has generated substantial interest in monitoring human activity to gear interventions toward environmental features that may relate to higher physical activity. Wearable devices, such as wrist-worn sensors that monitor gross motor activity (actigraph units) continuously record the activity levels of a subject, producing massive amounts of high-resolution measurements. Analyzing actigraph data needs to account for spatial and temporal information on trajectories or paths traversed by subjects wearing such devices. Inferential objectives include estimating a subject's physical activity levels along a given trajectory; identifying trajectories that are more likely to produce higher levels of physical activity for a given subject; and predicting expected levels of physical activity in any proposed new trajectory for a given set of health attributes. Here, we devise a Bayesian hierarchical modeling framework for spatial-temporal actigraphy data to deliver fully model-based inference on trajectories while accounting for subject-level health attributes and spatial-temporal dependencies. We undertake a comprehensive analysis of an original dataset from the Physical Activity through Sustainable Transport Approaches in Los Angeles (PASTA-LA) study to ascertain spatial zones and trajectories exhibiting significantly higher levels of physical activity while accounting for various sources of heterogeneity.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"17 4\",\"pages\":\"2865-2886\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815935/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aoas1742\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-aoas1742","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
BAYESIAN HIERARCHICAL MODELING AND ANALYSIS FOR ACTIGRAPH DATA FROM WEARABLE DEVICES.
The majority of Americans fail to achieve recommended levels of physical activity, which leads to numerous preventable health problems such as diabetes, hypertension, and heart diseases. This has generated substantial interest in monitoring human activity to gear interventions toward environmental features that may relate to higher physical activity. Wearable devices, such as wrist-worn sensors that monitor gross motor activity (actigraph units) continuously record the activity levels of a subject, producing massive amounts of high-resolution measurements. Analyzing actigraph data needs to account for spatial and temporal information on trajectories or paths traversed by subjects wearing such devices. Inferential objectives include estimating a subject's physical activity levels along a given trajectory; identifying trajectories that are more likely to produce higher levels of physical activity for a given subject; and predicting expected levels of physical activity in any proposed new trajectory for a given set of health attributes. Here, we devise a Bayesian hierarchical modeling framework for spatial-temporal actigraphy data to deliver fully model-based inference on trajectories while accounting for subject-level health attributes and spatial-temporal dependencies. We undertake a comprehensive analysis of an original dataset from the Physical Activity through Sustainable Transport Approaches in Los Angeles (PASTA-LA) study to ascertain spatial zones and trajectories exhibiting significantly higher levels of physical activity while accounting for various sources of heterogeneity.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.