{"title":"物种、自然选择和网络:三位历史学家与理论人口遗传学家的比较。","authors":"Donald R Forsdyke","doi":"10.1007/s12064-024-00412-9","DOIUrl":null,"url":null,"abstract":"<p><p>In 1913, the geneticist William Bateson called for a halt in studies of genetic phenomena until evolutionary fundamentals had been sufficiently addressed at the molecular level. Nevertheless, in the 1960s, the theoretical population geneticists celebrated a \"modern synthesis\" of the teachings of Mendel and Darwin, with an exclusive role for natural selection in speciation. This was supported, albeit with minor reservations, by historians Mark Adams and William Provine, who taught it to generations of students. In subsequent decades, doubts were raised by molecular biologists and, despite the deep influence of various mentors, Adams and Provine noted serious anomalies and began to question traditional \"just-so-stories.\" They were joined in challenging the genetic orthodoxy by a scientist-historian, Donald Forsdyke, who suggested that a \"collective variation\" postulated by Darwin's young research associate, George Romanes, and a mysterious \"residue\" postulated by Bateson, might relate to differences in short runs of DNA bases (oligonucleotides). The dispute between a small network of historians and a large network of geneticists can be understood in the context of national politics. Contrasts are drawn between democracies, where capturing the narrative makes reversal difficult, and dictatorships, where overthrow of a supportive dictator can result in rapid reversal.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":" ","pages":"1-26"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speciation, natural selection, and networks: three historians versus theoretical population geneticists.\",\"authors\":\"Donald R Forsdyke\",\"doi\":\"10.1007/s12064-024-00412-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 1913, the geneticist William Bateson called for a halt in studies of genetic phenomena until evolutionary fundamentals had been sufficiently addressed at the molecular level. Nevertheless, in the 1960s, the theoretical population geneticists celebrated a \\\"modern synthesis\\\" of the teachings of Mendel and Darwin, with an exclusive role for natural selection in speciation. This was supported, albeit with minor reservations, by historians Mark Adams and William Provine, who taught it to generations of students. In subsequent decades, doubts were raised by molecular biologists and, despite the deep influence of various mentors, Adams and Provine noted serious anomalies and began to question traditional \\\"just-so-stories.\\\" They were joined in challenging the genetic orthodoxy by a scientist-historian, Donald Forsdyke, who suggested that a \\\"collective variation\\\" postulated by Darwin's young research associate, George Romanes, and a mysterious \\\"residue\\\" postulated by Bateson, might relate to differences in short runs of DNA bases (oligonucleotides). The dispute between a small network of historians and a large network of geneticists can be understood in the context of national politics. Contrasts are drawn between democracies, where capturing the narrative makes reversal difficult, and dictatorships, where overthrow of a supportive dictator can result in rapid reversal.</p>\",\"PeriodicalId\":54428,\"journal\":{\"name\":\"Theory in Biosciences\",\"volume\":\" \",\"pages\":\"1-26\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory in Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12064-024-00412-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-024-00412-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Speciation, natural selection, and networks: three historians versus theoretical population geneticists.
In 1913, the geneticist William Bateson called for a halt in studies of genetic phenomena until evolutionary fundamentals had been sufficiently addressed at the molecular level. Nevertheless, in the 1960s, the theoretical population geneticists celebrated a "modern synthesis" of the teachings of Mendel and Darwin, with an exclusive role for natural selection in speciation. This was supported, albeit with minor reservations, by historians Mark Adams and William Provine, who taught it to generations of students. In subsequent decades, doubts were raised by molecular biologists and, despite the deep influence of various mentors, Adams and Provine noted serious anomalies and began to question traditional "just-so-stories." They were joined in challenging the genetic orthodoxy by a scientist-historian, Donald Forsdyke, who suggested that a "collective variation" postulated by Darwin's young research associate, George Romanes, and a mysterious "residue" postulated by Bateson, might relate to differences in short runs of DNA bases (oligonucleotides). The dispute between a small network of historians and a large network of geneticists can be understood in the context of national politics. Contrasts are drawn between democracies, where capturing the narrative makes reversal difficult, and dictatorships, where overthrow of a supportive dictator can result in rapid reversal.
期刊介绍:
Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are:
Artificial Life;
Bioinformatics with a focus on novel methods, phenomena, and interpretations;
Bioinspired Modeling;
Complexity, Robustness, and Resilience;
Embodied Cognition;
Evolutionary Biology;
Evo-Devo;
Game Theoretic Modeling;
Genetics;
History of Biology;
Language Evolution;
Mathematical Biology;
Origin of Life;
Philosophy of Biology;
Population Biology;
Systems Biology;
Theoretical Ecology;
Theoretical Molecular Biology;
Theoretical Neuroscience & Cognition.