硅学蛋白质功能预测:基于机器学习方法的兴起。

Medical review (Berlin, Germany) Pub Date : 2023-11-29 eCollection Date: 2023-12-01 DOI:10.1515/mr-2023-0038
Jiaxiao Chen, Zhonghui Gu, Luhua Lai, Jianfeng Pei
{"title":"硅学蛋白质功能预测:基于机器学习方法的兴起。","authors":"Jiaxiao Chen, Zhonghui Gu, Luhua Lai, Jianfeng Pei","doi":"10.1515/mr-2023-0038","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins function as integral actors in essential life processes, rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation. Within the context of protein research, an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings. Due to the exorbitant costs and limited throughput inherent in experimental investigations, computational models offer a promising alternative to accelerate protein function annotation. In recent years, protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks. This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction. In this review, we elucidate the historical evolution and research paradigms of computational methods for predicting protein function. Subsequently, we summarize the progress in protein and molecule representation as well as feature extraction techniques. Furthermore, we assess the performance of machine learning-based algorithms across various objectives in protein function prediction, thereby offering a comprehensive perspective on the progress within this field.</p>","PeriodicalId":74151,"journal":{"name":"Medical review (Berlin, Germany)","volume":"3 6","pages":"487-510"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808870/pdf/","citationCount":"0","resultStr":"{\"title\":\"In silico protein function prediction: the rise of machine learning-based approaches.\",\"authors\":\"Jiaxiao Chen, Zhonghui Gu, Luhua Lai, Jianfeng Pei\",\"doi\":\"10.1515/mr-2023-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteins function as integral actors in essential life processes, rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation. Within the context of protein research, an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings. Due to the exorbitant costs and limited throughput inherent in experimental investigations, computational models offer a promising alternative to accelerate protein function annotation. In recent years, protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks. This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction. In this review, we elucidate the historical evolution and research paradigms of computational methods for predicting protein function. Subsequently, we summarize the progress in protein and molecule representation as well as feature extraction techniques. Furthermore, we assess the performance of machine learning-based algorithms across various objectives in protein function prediction, thereby offering a comprehensive perspective on the progress within this field.</p>\",\"PeriodicalId\":74151,\"journal\":{\"name\":\"Medical review (Berlin, Germany)\",\"volume\":\"3 6\",\"pages\":\"487-510\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808870/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical review (Berlin, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mr-2023-0038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical review (Berlin, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mr-2023-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质在重要的生命过程中发挥着不可或缺的作用,因此蛋白质研究领域是一个基础领域,具有推动药物和疾病研究进步的潜力。在蛋白质研究的背景下,揭示蛋白质功能和解开复杂的机理基础成为当务之急。由于实验研究固有的高昂成本和有限的通量,计算模型为加速蛋白质功能注释提供了一个前景广阔的替代方案。近年来,蛋白质预训练模型在多项预测任务中取得了显著进步。这一进步凸显了有效处理与蛋白质功能预测相关的复杂下游任务的显著前景。在这篇综述中,我们将阐明预测蛋白质功能的计算方法的历史演变和研究范式。随后,我们总结了蛋白质和分子表示以及特征提取技术方面的进展。此外,我们还评估了基于机器学习的算法在蛋白质功能预测的各种目标中的表现,从而为该领域的进展提供了一个全面的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In silico protein function prediction: the rise of machine learning-based approaches.

Proteins function as integral actors in essential life processes, rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation. Within the context of protein research, an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings. Due to the exorbitant costs and limited throughput inherent in experimental investigations, computational models offer a promising alternative to accelerate protein function annotation. In recent years, protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks. This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction. In this review, we elucidate the historical evolution and research paradigms of computational methods for predicting protein function. Subsequently, we summarize the progress in protein and molecule representation as well as feature extraction techniques. Furthermore, we assess the performance of machine learning-based algorithms across various objectives in protein function prediction, thereby offering a comprehensive perspective on the progress within this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊最新文献
Biofluid biomarkers for Alzheimer's disease: past, present, and future. Microplastic exposure is associated with male reproductive health. Mechanical force modulates inflammation and immunomodulation in periodontal ligament cells. A new year, a renewed dedication: greetings from Medical Review. The complex interplay between aging and cancer: unraveling the clues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1