具有最佳储备要求的集合风能预测区间

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Modern Power Systems and Clean Energy Pub Date : 2023-11-01 DOI:10.35833/MPCE.2023.000464
Hamid Rezaie;Cheuk Hei Chung;Nima Safari
{"title":"具有最佳储备要求的集合风能预测区间","authors":"Hamid Rezaie;Cheuk Hei Chung;Nima Safari","doi":"10.35833/MPCE.2023.000464","DOIUrl":null,"url":null,"abstract":"Wind power prediction interval (WPPI) models in the literature have predominantly been developed for and tested on specific case studies. However, wind behavior and characteristics can vary significantly across regions. Thus, a prediction model that performs well in one case might underperform in another. To address this shortcoming, this paper proposes an ensemble WPPI framework that integrates multiple WPPI models with distinct characteristics to improve robustness. Another important and often overlooked factor is the role of probabilistic wind power prediction (WPP) in quantifying wind power uncertainty, which should be handled by operating reserve. Operating reserve in WPPI frameworks enhances the efficacy of WPP. In this regard, the proposed framework employs a novel bi-layer optimization approach that takes both WPPI quality and reserve requirements into account. Comprehensive analysis with different real-world datasets and various benchmark models validates the quality of the obtained WPPIs while resulting in more optimal reserve requirements.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 1","pages":"65-76"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10304598","citationCount":"0","resultStr":"{\"title\":\"Ensemble Wind Power Prediction Interval with Optimal Reserve Requirement\",\"authors\":\"Hamid Rezaie;Cheuk Hei Chung;Nima Safari\",\"doi\":\"10.35833/MPCE.2023.000464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind power prediction interval (WPPI) models in the literature have predominantly been developed for and tested on specific case studies. However, wind behavior and characteristics can vary significantly across regions. Thus, a prediction model that performs well in one case might underperform in another. To address this shortcoming, this paper proposes an ensemble WPPI framework that integrates multiple WPPI models with distinct characteristics to improve robustness. Another important and often overlooked factor is the role of probabilistic wind power prediction (WPP) in quantifying wind power uncertainty, which should be handled by operating reserve. Operating reserve in WPPI frameworks enhances the efficacy of WPP. In this regard, the proposed framework employs a novel bi-layer optimization approach that takes both WPPI quality and reserve requirements into account. Comprehensive analysis with different real-world datasets and various benchmark models validates the quality of the obtained WPPIs while resulting in more optimal reserve requirements.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 1\",\"pages\":\"65-76\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10304598\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10304598/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10304598/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

文献中的风功率预测区间(WPPI)模型主要是针对特定案例研究开发和测试的。然而,风的行为和特性在不同地区会有很大差异。因此,在一种情况下表现良好的预测模型在另一种情况下可能表现不佳。为解决这一缺陷,本文提出了一个集合 WPPI 框架,该框架整合了多个具有不同特征的 WPPI 模型,以提高稳健性。另一个经常被忽视的重要因素是概率风电预测(WPP)在量化风电不确定性方面的作用,而这应该由运行储备来处理。WPPI 框架中的运行储备可增强 WPP 的功效。为此,所提出的框架采用了一种新颖的双层优化方法,将 WPPI 质量和储备要求都考虑在内。通过对不同的真实数据集和各种基准模型进行综合分析,验证了所获得的 WPPI 的质量,同时也提出了更优化的储备要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble Wind Power Prediction Interval with Optimal Reserve Requirement
Wind power prediction interval (WPPI) models in the literature have predominantly been developed for and tested on specific case studies. However, wind behavior and characteristics can vary significantly across regions. Thus, a prediction model that performs well in one case might underperform in another. To address this shortcoming, this paper proposes an ensemble WPPI framework that integrates multiple WPPI models with distinct characteristics to improve robustness. Another important and often overlooked factor is the role of probabilistic wind power prediction (WPP) in quantifying wind power uncertainty, which should be handled by operating reserve. Operating reserve in WPPI frameworks enhances the efficacy of WPP. In this regard, the proposed framework employs a novel bi-layer optimization approach that takes both WPPI quality and reserve requirements into account. Comprehensive analysis with different real-world datasets and various benchmark models validates the quality of the obtained WPPIs while resulting in more optimal reserve requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
期刊最新文献
Contents Contents Regional Power System Black Start with Run-of-River Hydropower Plant and Battery Energy Storage Power Flow Calculation for VSC-Based AC/DC Hybrid Systems Based on Fast and Flexible Holomorphic Embedding Machine Learning Based Uncertainty-Alleviating Operation Model for Distribution Systems with Energy Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1