Yunmian Xiao, Yongqiang Yang, Di Wang, Hanxiang Zhou, Zibin Liu, Linqing Liu, Shibiao Wu, Changhui Song
{"title":"利用激光粉末床熔融技术原位合成空间异质结构钛复合材料,以克服强度和塑性之间的权衡问题","authors":"Yunmian Xiao, Yongqiang Yang, Di Wang, Hanxiang Zhou, Zibin Liu, Linqing Liu, Shibiao Wu, Changhui Song","doi":"10.1016/j.ijmachtools.2024.104117","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Recent research has focused on laser in-situ additive manufacturing of </span>metal matrix composites<span> with spatially controllable microstructures (phases). This study, inspired by the process of inserting mesh fibers into reinforced concrete, synthesizes TiN in situ using laser </span></span>powder bed fusion and N</span><sub>2</sub><span> gas. The laser-melted track, embedded with TiN particles, formed a spatially heterostructured Ti composite (SHTC) with a three-dimensional, artificially controlled architecture in a pure Ti matrix. The influences of process parameters on the mechanical properties of the spatially heterostructured Ti composite and the microstructural evolution of TiN/Ti were investigated emphatically. The results showed that the growth direction of the microstructure was changed by laser powder bed fusion additive manufacturing with alternating N</span><sub>2</sub>–Ar gas under suitable N<sub>2</sub><span> concentration and melting track spacing. Among all spatially heterostructured Ti composites, the TiN–Ti heterolayer net-like structure achieved a high ultimate tensile strength<span><span> of ∼1.0 GPa and elongation of 27 %, demonstrating a superior strength-ductility combination than intrinsic pure Ti and uniform TiN composites, as well as traditional layered structure Ti-based composites. During the tensile test, the </span>deformation behavior<span><span> was monitored in situ using digital image correlation<span>, and the fracture mechanism was investigated. Hetero-deformation induced strengthening and toughening potentially explains the mechanism behind the strength enhancement of spatially heterostructured Ti composites. Furthermore, this work may stimulate research and development in additive manufacturing of spatial </span></span>heterostructures with configurable structures, targeting synergistic regulation of strength and ductility in the integration of structure-material-function.</span></span></span></p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"196 ","pages":"Article 104117"},"PeriodicalIF":14.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ synthesis of spatial heterostructure Ti composites by laser powder bed fusion to overcome the strength and plasticity trade-off\",\"authors\":\"Yunmian Xiao, Yongqiang Yang, Di Wang, Hanxiang Zhou, Zibin Liu, Linqing Liu, Shibiao Wu, Changhui Song\",\"doi\":\"10.1016/j.ijmachtools.2024.104117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Recent research has focused on laser in-situ additive manufacturing of </span>metal matrix composites<span> with spatially controllable microstructures (phases). This study, inspired by the process of inserting mesh fibers into reinforced concrete, synthesizes TiN in situ using laser </span></span>powder bed fusion and N</span><sub>2</sub><span> gas. The laser-melted track, embedded with TiN particles, formed a spatially heterostructured Ti composite (SHTC) with a three-dimensional, artificially controlled architecture in a pure Ti matrix. The influences of process parameters on the mechanical properties of the spatially heterostructured Ti composite and the microstructural evolution of TiN/Ti were investigated emphatically. The results showed that the growth direction of the microstructure was changed by laser powder bed fusion additive manufacturing with alternating N</span><sub>2</sub>–Ar gas under suitable N<sub>2</sub><span> concentration and melting track spacing. Among all spatially heterostructured Ti composites, the TiN–Ti heterolayer net-like structure achieved a high ultimate tensile strength<span><span> of ∼1.0 GPa and elongation of 27 %, demonstrating a superior strength-ductility combination than intrinsic pure Ti and uniform TiN composites, as well as traditional layered structure Ti-based composites. During the tensile test, the </span>deformation behavior<span><span> was monitored in situ using digital image correlation<span>, and the fracture mechanism was investigated. Hetero-deformation induced strengthening and toughening potentially explains the mechanism behind the strength enhancement of spatially heterostructured Ti composites. Furthermore, this work may stimulate research and development in additive manufacturing of spatial </span></span>heterostructures with configurable structures, targeting synergistic regulation of strength and ductility in the integration of structure-material-function.</span></span></span></p></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"196 \",\"pages\":\"Article 104117\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890695524000038\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695524000038","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
摘要
近期研究的重点是激光原位添加制造具有空间可控微结构(相)的金属基复合材料。本研究受将网状纤维插入钢筋混凝土过程的启发,利用激光粉末床熔融和 N2 气体原位合成 TiN。嵌入 TiN 颗粒的激光熔融轨道在纯钛基体中形成了具有三维人工控制结构的空间异质结构钛复合材料(SHTC)。重点研究了工艺参数对空间异质结构 Ti 复合材料机械性能的影响以及 TiN/Ti 的微观结构演变。结果表明,在合适的 N2 浓度和熔化轨道间距条件下,采用 N2-Ar 气体交替作用的激光粉末床熔融快速成型工艺改变了微观结构的生长方向。在所有空间异质结构Ti复合材料中,TiN-Ti异质层网状结构的极限拉伸强度高达1.0 GPa,伸长率为27%,显示出比固有纯Ti和均匀TiN复合材料以及传统层状结构Ti基复合材料更优越的强度-电导率组合。在拉伸试验过程中,使用数字图像相关技术对变形行为进行了现场监测,并对断裂机制进行了研究。异质变形诱导的强化和增韧可能解释了空间异质结构钛复合材料强度增强背后的机理。此外,这项工作可能会促进具有可配置结构的空间异质结构增材制造的研究和开发,从而在结构-材料-功能一体化过程中实现强度和延展性的协同调节。
In-situ synthesis of spatial heterostructure Ti composites by laser powder bed fusion to overcome the strength and plasticity trade-off
Recent research has focused on laser in-situ additive manufacturing of metal matrix composites with spatially controllable microstructures (phases). This study, inspired by the process of inserting mesh fibers into reinforced concrete, synthesizes TiN in situ using laser powder bed fusion and N2 gas. The laser-melted track, embedded with TiN particles, formed a spatially heterostructured Ti composite (SHTC) with a three-dimensional, artificially controlled architecture in a pure Ti matrix. The influences of process parameters on the mechanical properties of the spatially heterostructured Ti composite and the microstructural evolution of TiN/Ti were investigated emphatically. The results showed that the growth direction of the microstructure was changed by laser powder bed fusion additive manufacturing with alternating N2–Ar gas under suitable N2 concentration and melting track spacing. Among all spatially heterostructured Ti composites, the TiN–Ti heterolayer net-like structure achieved a high ultimate tensile strength of ∼1.0 GPa and elongation of 27 %, demonstrating a superior strength-ductility combination than intrinsic pure Ti and uniform TiN composites, as well as traditional layered structure Ti-based composites. During the tensile test, the deformation behavior was monitored in situ using digital image correlation, and the fracture mechanism was investigated. Hetero-deformation induced strengthening and toughening potentially explains the mechanism behind the strength enhancement of spatially heterostructured Ti composites. Furthermore, this work may stimulate research and development in additive manufacturing of spatial heterostructures with configurable structures, targeting synergistic regulation of strength and ductility in the integration of structure-material-function.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).