结合图谱和超图谱卷积网络预测 miRNA 与疾病的关联性

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-06-01 Epub Date: 2024-01-29 DOI:10.1007/s12539-023-00599-3
Xujun Liang, Ming Guo, Longying Jiang, Ying Fu, Pengfei Zhang, Yongheng Chen
{"title":"结合图谱和超图谱卷积网络预测 miRNA 与疾病的关联性","authors":"Xujun Liang, Ming Guo, Longying Jiang, Ying Fu, Pengfei Zhang, Yongheng Chen","doi":"10.1007/s12539-023-00599-3","DOIUrl":null,"url":null,"abstract":"<p><p>miRNAs are important regulators for many crucial biological processes. Many recent studies have shown that miRNAs are closely related to various human diseases and can be potential biomarkers or therapeutic targets for some diseases, such as cancers. Therefore, accurately predicting miRNA-disease associations is of great importance for understanding and curing diseases. However, how to efficiently utilize the characteristics of miRNAs and diseases and the information on known miRNA-disease associations for prediction is still not fully explored. In this study, we propose a novel computational method for predicting miRNA-disease associations. The proposed method combines the graph convolutional network and the hypergraph convolutional network. The graph convolutional network is utilized to extract the information from miRNA-similarity data as well as disease-similarity data. Based on the representations of miRNAs and diseases learned by the graph convolutional network, we further use the hypergraph convolutional network to capture the complex high-order interactions in the known miRNA-disease associations. We conduct comprehensive experiments with different datasets and predictive tasks. The results show that the proposed method consistently outperforms several other state-of-the-art methods. We also discuss the influence of hyper-parameters and model structures on the performance of our method. Some case studies also demonstrate that the predictive results of the method can be verified by independent experiments.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"289-303"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network.\",\"authors\":\"Xujun Liang, Ming Guo, Longying Jiang, Ying Fu, Pengfei Zhang, Yongheng Chen\",\"doi\":\"10.1007/s12539-023-00599-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>miRNAs are important regulators for many crucial biological processes. Many recent studies have shown that miRNAs are closely related to various human diseases and can be potential biomarkers or therapeutic targets for some diseases, such as cancers. Therefore, accurately predicting miRNA-disease associations is of great importance for understanding and curing diseases. However, how to efficiently utilize the characteristics of miRNAs and diseases and the information on known miRNA-disease associations for prediction is still not fully explored. In this study, we propose a novel computational method for predicting miRNA-disease associations. The proposed method combines the graph convolutional network and the hypergraph convolutional network. The graph convolutional network is utilized to extract the information from miRNA-similarity data as well as disease-similarity data. Based on the representations of miRNAs and diseases learned by the graph convolutional network, we further use the hypergraph convolutional network to capture the complex high-order interactions in the known miRNA-disease associations. We conduct comprehensive experiments with different datasets and predictive tasks. The results show that the proposed method consistently outperforms several other state-of-the-art methods. We also discuss the influence of hyper-parameters and model structures on the performance of our method. Some case studies also demonstrate that the predictive results of the method can be verified by independent experiments.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"289-303\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-023-00599-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-023-00599-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

miRNA 是许多关键生物过程的重要调节因子。最近的许多研究表明,miRNA 与人类各种疾病密切相关,可以成为某些疾病(如癌症)的潜在生物标志物或治疗靶点。因此,准确预测 miRNA 与疾病的关联对于了解和治疗疾病具有重要意义。然而,如何有效地利用 miRNA 与疾病的特征以及已知 miRNA 与疾病关联的信息进行预测,目前还没有得到充分的探讨。在本研究中,我们提出了一种预测 miRNA 与疾病关联的新型计算方法。该方法结合了图卷积网络和超图卷积网络。图卷积网络用于从 miRNA 相似性数据和疾病相似性数据中提取信息。在图卷积网络学习到的 miRNA 和疾病表征的基础上,我们进一步利用超图卷积网络捕捉已知 miRNA 与疾病关联中复杂的高阶交互作用。我们利用不同的数据集和预测任务进行了全面的实验。结果表明,所提出的方法始终优于其他几种最先进的方法。我们还讨论了超参数和模型结构对我们方法性能的影响。一些案例研究还表明,该方法的预测结果可以通过独立实验进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network.

miRNAs are important regulators for many crucial biological processes. Many recent studies have shown that miRNAs are closely related to various human diseases and can be potential biomarkers or therapeutic targets for some diseases, such as cancers. Therefore, accurately predicting miRNA-disease associations is of great importance for understanding and curing diseases. However, how to efficiently utilize the characteristics of miRNAs and diseases and the information on known miRNA-disease associations for prediction is still not fully explored. In this study, we propose a novel computational method for predicting miRNA-disease associations. The proposed method combines the graph convolutional network and the hypergraph convolutional network. The graph convolutional network is utilized to extract the information from miRNA-similarity data as well as disease-similarity data. Based on the representations of miRNAs and diseases learned by the graph convolutional network, we further use the hypergraph convolutional network to capture the complex high-order interactions in the known miRNA-disease associations. We conduct comprehensive experiments with different datasets and predictive tasks. The results show that the proposed method consistently outperforms several other state-of-the-art methods. We also discuss the influence of hyper-parameters and model structures on the performance of our method. Some case studies also demonstrate that the predictive results of the method can be verified by independent experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
期刊最新文献
A Multi-View Feature-Based Interpretable Deep Learning Framework for Drug-Drug Interaction Prediction. Adaptive Multi-Kernel Graph Neural Network for Drug-Drug Interaction Prediction. Reinforced Collaborative-Competitive Representation for Biomedical Image Recognition. A Domain Adaptive Interpretable Substructure-Aware Graph Attention Network for Drug-Drug Interaction Prediction. NRGCNMDA: Microbe-Drug Association Prediction Based on Residual Graph Convolutional Networks and Conditional Random Fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1