Morgan J McCullough, Miriya K Tune, Johnny Castillo Cabrera, Jose Torres-Castillo, Minghong He, Yongqiang Feng, Claire M Doerschuk, Hong Dang, Adriana S Beltran, Robert S Hagan, Jason R Mock
{"title":"存在和不存在叉头盒 P3 (FOXP3) 时 MT-2 Treg 样细胞系的特征。","authors":"Morgan J McCullough, Miriya K Tune, Johnny Castillo Cabrera, Jose Torres-Castillo, Minghong He, Yongqiang Feng, Claire M Doerschuk, Hong Dang, Adriana S Beltran, Robert S Hagan, Jason R Mock","doi":"10.1111/imcb.12725","DOIUrl":null,"url":null,"abstract":"<p>CD4<sup>+</sup> forkhead box P3 (FOXP3)<sup>+</sup> regulatory T cells (Tregs) are essential in maintaining immune tolerance and suppressing excessive immune responses. Tregs also contribute to tissue repair processes distinct from their roles in immune suppression. For these reasons, Tregs are candidates for targeted therapies for inflammatory and autoimmune diseases, and in diseases where tissue damage occurs. MT-2 cells, an immortalized Treg-like cell line, offer a model to study Treg biology and their therapeutic potential. In the present study, we use clustered regularly interspaced palindromic repeats (CRISPR)-mediated knockdown of FOXP3 in MT-2 cells to understand the transcriptional and functional changes that occur when FOXP3 is lost and to compare MT-2 cells with primary human Tregs. We demonstrate that loss of FOXP3 affects the transcriptome of MT-2 cells and that FOXP3's potential downstream targets include a wide range of transcripts that participate in the cell cycle, promote growth and contribute to inflammatory processes, but do not wholly simulate previously reported human primary Treg transcriptional changes in the absence of FOXP3. We also demonstrate that FOXP3 regulates cell cycling and proliferation, expression of molecules crucial to Treg function and MT-2 cell–suppressive activities. Thus, MT-2 cells offer opportunities to address regulatory T-cell functions <i>in vitro</i>.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 3","pages":"211-224"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the MT-2 Treg-like cell line in the presence and absence of forkhead box P3 (FOXP3)\",\"authors\":\"Morgan J McCullough, Miriya K Tune, Johnny Castillo Cabrera, Jose Torres-Castillo, Minghong He, Yongqiang Feng, Claire M Doerschuk, Hong Dang, Adriana S Beltran, Robert S Hagan, Jason R Mock\",\"doi\":\"10.1111/imcb.12725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>CD4<sup>+</sup> forkhead box P3 (FOXP3)<sup>+</sup> regulatory T cells (Tregs) are essential in maintaining immune tolerance and suppressing excessive immune responses. Tregs also contribute to tissue repair processes distinct from their roles in immune suppression. For these reasons, Tregs are candidates for targeted therapies for inflammatory and autoimmune diseases, and in diseases where tissue damage occurs. MT-2 cells, an immortalized Treg-like cell line, offer a model to study Treg biology and their therapeutic potential. In the present study, we use clustered regularly interspaced palindromic repeats (CRISPR)-mediated knockdown of FOXP3 in MT-2 cells to understand the transcriptional and functional changes that occur when FOXP3 is lost and to compare MT-2 cells with primary human Tregs. We demonstrate that loss of FOXP3 affects the transcriptome of MT-2 cells and that FOXP3's potential downstream targets include a wide range of transcripts that participate in the cell cycle, promote growth and contribute to inflammatory processes, but do not wholly simulate previously reported human primary Treg transcriptional changes in the absence of FOXP3. We also demonstrate that FOXP3 regulates cell cycling and proliferation, expression of molecules crucial to Treg function and MT-2 cell–suppressive activities. Thus, MT-2 cells offer opportunities to address regulatory T-cell functions <i>in vitro</i>.</p>\",\"PeriodicalId\":179,\"journal\":{\"name\":\"Immunology & Cell Biology\",\"volume\":\"102 3\",\"pages\":\"211-224\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology & Cell Biology\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imcb.12725\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology & Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imcb.12725","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Characterization of the MT-2 Treg-like cell line in the presence and absence of forkhead box P3 (FOXP3)
CD4+ forkhead box P3 (FOXP3)+ regulatory T cells (Tregs) are essential in maintaining immune tolerance and suppressing excessive immune responses. Tregs also contribute to tissue repair processes distinct from their roles in immune suppression. For these reasons, Tregs are candidates for targeted therapies for inflammatory and autoimmune diseases, and in diseases where tissue damage occurs. MT-2 cells, an immortalized Treg-like cell line, offer a model to study Treg biology and their therapeutic potential. In the present study, we use clustered regularly interspaced palindromic repeats (CRISPR)-mediated knockdown of FOXP3 in MT-2 cells to understand the transcriptional and functional changes that occur when FOXP3 is lost and to compare MT-2 cells with primary human Tregs. We demonstrate that loss of FOXP3 affects the transcriptome of MT-2 cells and that FOXP3's potential downstream targets include a wide range of transcripts that participate in the cell cycle, promote growth and contribute to inflammatory processes, but do not wholly simulate previously reported human primary Treg transcriptional changes in the absence of FOXP3. We also demonstrate that FOXP3 regulates cell cycling and proliferation, expression of molecules crucial to Treg function and MT-2 cell–suppressive activities. Thus, MT-2 cells offer opportunities to address regulatory T-cell functions in vitro.
期刊介绍:
The Australasian Society for Immunology Incorporated (ASI) was created by the amalgamation in 1991 of the Australian Society for Immunology, formed in 1970, and the New Zealand Society for Immunology, formed in 1975. The aim of the Society is to encourage and support the discipline of immunology in the Australasian region. It is a broadly based Society, embracing clinical and experimental, cellular and molecular immunology in humans and animals. The Society provides a network for the exchange of information and for collaboration within Australia, New Zealand and overseas. ASI members have been prominent in advancing biological and medical research worldwide. We seek to encourage the study of immunology in Australia and New Zealand and are active in introducing young scientists to the discipline.