Alejandro Castilla-Ibeas, Sofía Zdral, Kerby C. Oberg, Marian A. Ros
{"title":"肢体背腹轴:Lmx1b在发育、病理、进化和再生中的作用","authors":"Alejandro Castilla-Ibeas, Sofía Zdral, Kerby C. Oberg, Marian A. Ros","doi":"10.1002/dvdy.695","DOIUrl":null,"url":null,"abstract":"<p>The limb anatomy displays well-defined dorsal and ventral compartments, housing extensor, and flexor muscles, which play a crucial role in facilitating limb locomotion and manipulation. Despite its importance, the study of limb dorsoventral patterning has been relatively neglected compared to the other two axes leaving many crucial questions about the genes and developmental processes implicated unanswered. This review offers a thorough overview of the current understanding of limb dorsoventral patterning, synthesizing classical literature with recent research. It covers the specification of dorsal fate in the limb mesoderm and its subsequent translation into dorsal morphologies—a process directed by the transcription factor Lmx1b. We also discuss the potential role of dorsoventral patterning in the evolution of paired appendages and delve into the involvement of <i>LMX1B</i> in Nail-Patella syndrome, discussing the molecular and genetic aspects underlying this condition. Finally, the potential role of dorsoventral polarity in digit tip regeneration, a prominent instance of multi-tissue regeneration in mammals is also considered. We anticipate that this review will renew interest in a process that is critical to limb function and evolutionary adaptations but has nonetheless been overlooked.</p>","PeriodicalId":11247,"journal":{"name":"Developmental Dynamics","volume":"253 9","pages":"798-814"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvdy.695","citationCount":"0","resultStr":"{\"title\":\"The limb dorsoventral axis: Lmx1b's role in development, pathology, evolution, and regeneration\",\"authors\":\"Alejandro Castilla-Ibeas, Sofía Zdral, Kerby C. Oberg, Marian A. Ros\",\"doi\":\"10.1002/dvdy.695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The limb anatomy displays well-defined dorsal and ventral compartments, housing extensor, and flexor muscles, which play a crucial role in facilitating limb locomotion and manipulation. Despite its importance, the study of limb dorsoventral patterning has been relatively neglected compared to the other two axes leaving many crucial questions about the genes and developmental processes implicated unanswered. This review offers a thorough overview of the current understanding of limb dorsoventral patterning, synthesizing classical literature with recent research. It covers the specification of dorsal fate in the limb mesoderm and its subsequent translation into dorsal morphologies—a process directed by the transcription factor Lmx1b. We also discuss the potential role of dorsoventral patterning in the evolution of paired appendages and delve into the involvement of <i>LMX1B</i> in Nail-Patella syndrome, discussing the molecular and genetic aspects underlying this condition. Finally, the potential role of dorsoventral polarity in digit tip regeneration, a prominent instance of multi-tissue regeneration in mammals is also considered. We anticipate that this review will renew interest in a process that is critical to limb function and evolutionary adaptations but has nonetheless been overlooked.</p>\",\"PeriodicalId\":11247,\"journal\":{\"name\":\"Developmental Dynamics\",\"volume\":\"253 9\",\"pages\":\"798-814\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvdy.695\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dvdy.695\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Dynamics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvdy.695","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
The limb dorsoventral axis: Lmx1b's role in development, pathology, evolution, and regeneration
The limb anatomy displays well-defined dorsal and ventral compartments, housing extensor, and flexor muscles, which play a crucial role in facilitating limb locomotion and manipulation. Despite its importance, the study of limb dorsoventral patterning has been relatively neglected compared to the other two axes leaving many crucial questions about the genes and developmental processes implicated unanswered. This review offers a thorough overview of the current understanding of limb dorsoventral patterning, synthesizing classical literature with recent research. It covers the specification of dorsal fate in the limb mesoderm and its subsequent translation into dorsal morphologies—a process directed by the transcription factor Lmx1b. We also discuss the potential role of dorsoventral patterning in the evolution of paired appendages and delve into the involvement of LMX1B in Nail-Patella syndrome, discussing the molecular and genetic aspects underlying this condition. Finally, the potential role of dorsoventral polarity in digit tip regeneration, a prominent instance of multi-tissue regeneration in mammals is also considered. We anticipate that this review will renew interest in a process that is critical to limb function and evolutionary adaptations but has nonetheless been overlooked.
期刊介绍:
Developmental Dynamics, is an official publication of the American Association for Anatomy. This peer reviewed journal provides an international forum for publishing novel discoveries, using any model system, that advances our understanding of development, morphology, form and function, evolution, disease, stem cells, repair and regeneration.