有证据表明角质细胞衍生的微囊颗粒参与了与 A 型色素性角化症相关的光敏现象。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Photochemistry and Photobiology Pub Date : 2024-09-01 Epub Date: 2024-01-29 DOI:10.1111/php.13915
Lea Christian, Pranali Manjrekar, Karen M Henkels, Christine M Rapp, Risha Annamraju, Rushabh P Lohade, Shikshita Singh, M Alexandra Carpenter, Saman Khan, Michael G Kemp, Yanfang Chen, Ravi P Sahu, Jeffrey B Travers
{"title":"有证据表明角质细胞衍生的微囊颗粒参与了与 A 型色素性角化症相关的光敏现象。","authors":"Lea Christian, Pranali Manjrekar, Karen M Henkels, Christine M Rapp, Risha Annamraju, Rushabh P Lohade, Shikshita Singh, M Alexandra Carpenter, Saman Khan, Michael G Kemp, Yanfang Chen, Ravi P Sahu, Jeffrey B Travers","doi":"10.1111/php.13915","DOIUrl":null,"url":null,"abstract":"<p><p>Photosensitivity can be due to numerous causes. The photosensitivity associated with deficiency of xeroderma pigmentosum type A (XPA) has been previously shown to be associated with excess levels of the lipid mediator platelet-activating factor (PAF) generated by the keratinocyte. As PAF has been reported to trigger the production of subcellular microvesicle particles (MVP) due to the enzyme acid sphingomyelinase (aSMase), the goal of these studies was to discern if PAF and aSMase could serve as therapeutic targets for the XPA deficiency photosensitivity. HaCaT keratinocytes lacking XPA generated greater levels of MVP in comparison to control cells. Mice deficient in XPA also generated enhanced MVP levels in skin and in plasma in response to UV radiation. Use of a genetic strategy with mice deficient in both XPA and PAF receptors revealed that these mice generated less MVP release as well as decreased skin erythema and cytokine release compared to XPA knockout mice alone. Finally, the aSMase inhibitor imipramine blocked UV-induced MVP release in HaCaT keratinocytes, as well as XPA knockout mice. These studies support the concept that the photosensitivity associated with XPA involves PAF- and aSMase-mediated MVP release and provides a potential pharmacologic target in treating this form of photosensitivity.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284252/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evidence for the involvement of keratinocyte-derived microvesicle particles in the photosensitivity associated with xeroderma pigmentosum type A deficiency.\",\"authors\":\"Lea Christian, Pranali Manjrekar, Karen M Henkels, Christine M Rapp, Risha Annamraju, Rushabh P Lohade, Shikshita Singh, M Alexandra Carpenter, Saman Khan, Michael G Kemp, Yanfang Chen, Ravi P Sahu, Jeffrey B Travers\",\"doi\":\"10.1111/php.13915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photosensitivity can be due to numerous causes. The photosensitivity associated with deficiency of xeroderma pigmentosum type A (XPA) has been previously shown to be associated with excess levels of the lipid mediator platelet-activating factor (PAF) generated by the keratinocyte. As PAF has been reported to trigger the production of subcellular microvesicle particles (MVP) due to the enzyme acid sphingomyelinase (aSMase), the goal of these studies was to discern if PAF and aSMase could serve as therapeutic targets for the XPA deficiency photosensitivity. HaCaT keratinocytes lacking XPA generated greater levels of MVP in comparison to control cells. Mice deficient in XPA also generated enhanced MVP levels in skin and in plasma in response to UV radiation. Use of a genetic strategy with mice deficient in both XPA and PAF receptors revealed that these mice generated less MVP release as well as decreased skin erythema and cytokine release compared to XPA knockout mice alone. Finally, the aSMase inhibitor imipramine blocked UV-induced MVP release in HaCaT keratinocytes, as well as XPA knockout mice. These studies support the concept that the photosensitivity associated with XPA involves PAF- and aSMase-mediated MVP release and provides a potential pharmacologic target in treating this form of photosensitivity.</p>\",\"PeriodicalId\":20133,\"journal\":{\"name\":\"Photochemistry and Photobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284252/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemistry and Photobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/php.13915\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.13915","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

光敏感可由多种原因引起。A 型色素性红斑(XPA)缺乏症所引起的光敏感性与角质形成细胞产生的脂质介质血小板活化因子(PAF)水平过高有关。据报道,由于酸性鞘磷脂酶(aSMase)的作用,PAF 会引发亚细胞微囊颗粒(MVP)的产生,因此这些研究的目的是确定 PAF 和 aSMase 是否可以作为 XPA 缺乏症光敏性的治疗靶点。与对照细胞相比,缺乏 XPA 的 HaCaT 角质细胞产生的 MVP 水平更高。缺乏 XPA 的小鼠在紫外线辐射下,皮肤和血浆中的 MVP 水平也会升高。利用同时缺失 XPA 和 PAF 受体的小鼠的遗传策略发现,与单独缺失 XPA 的小鼠相比,这些小鼠产生的 MVP 释放量更少,皮肤红斑和细胞因子释放量也更少。最后,aSMase 抑制剂亚胺培南阻断了紫外线诱导的 HaCaT 角质细胞和 XPA 基因敲除小鼠的 MVP 释放。这些研究支持了与 XPA 相关的光敏感涉及 PAF 和 aSMase 介导的 MVP 释放这一概念,并为治疗这种形式的光敏感提供了潜在的药理靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evidence for the involvement of keratinocyte-derived microvesicle particles in the photosensitivity associated with xeroderma pigmentosum type A deficiency.

Photosensitivity can be due to numerous causes. The photosensitivity associated with deficiency of xeroderma pigmentosum type A (XPA) has been previously shown to be associated with excess levels of the lipid mediator platelet-activating factor (PAF) generated by the keratinocyte. As PAF has been reported to trigger the production of subcellular microvesicle particles (MVP) due to the enzyme acid sphingomyelinase (aSMase), the goal of these studies was to discern if PAF and aSMase could serve as therapeutic targets for the XPA deficiency photosensitivity. HaCaT keratinocytes lacking XPA generated greater levels of MVP in comparison to control cells. Mice deficient in XPA also generated enhanced MVP levels in skin and in plasma in response to UV radiation. Use of a genetic strategy with mice deficient in both XPA and PAF receptors revealed that these mice generated less MVP release as well as decreased skin erythema and cytokine release compared to XPA knockout mice alone. Finally, the aSMase inhibitor imipramine blocked UV-induced MVP release in HaCaT keratinocytes, as well as XPA knockout mice. These studies support the concept that the photosensitivity associated with XPA involves PAF- and aSMase-mediated MVP release and provides a potential pharmacologic target in treating this form of photosensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photochemistry and Photobiology
Photochemistry and Photobiology 生物-生化与分子生物学
CiteScore
6.70
自引率
12.10%
发文量
171
审稿时长
2.7 months
期刊介绍: Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.
期刊最新文献
Performance of chatbots in queries concerning fundamental concepts in photochemistry. Enhancement of the angiogenic differentiation in the periodontal ligament stem cells using fibroblast growth factor 2 and photobiomodulation: An in vitro investigation. Extending the acute skin response spectrum to include the far-UVC. Inhibition sensitivity of in vitro firefly bioluminescence quantum yields to Zn2+ and Cd2+ concentrations in aqueous solutions. Ultraviolet radiation inhibits mitochondrial bioenergetics activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1