Gerard Salame, Matthew Holden, Brian P Lucas, Albert Portillo
{"title":"全科医学实习生超声波探头运动经济性的变化。","authors":"Gerard Salame, Matthew Holden, Brian P Lucas, Albert Portillo","doi":"10.1186/s13089-023-00345-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To observe change in economy of 9 ultrasound probe movement metrics among internal medicine trainees during a 5-day training course in cardiac point of care ultrasound (POCUS).</p><p><strong>Methods: </strong>We used a novel probe tracking device to record nine features of ultrasound probe movement, while trainees and experts optimized ultrasound clips on the same volunteer patients. These features included translational movements, gyroscopic movements (titling, rocking, and rotation), smoothness, total path length, and scanning time. We determined the adjusted difference between each trainee's movements and the mean value of the experts' movements for each patient. We then used a mixed effects model to trend average the adjusted differences between trainees and experts throughout the 5 days of the course.</p><p><strong>Results: </strong>Fifteen trainees were enrolled. Three echocardiographer technicians and the course director served as experts. Across 16 unique patients, 294 ultrasound clips were acquired. For all 9 movements, the adjusted difference between trainees and experts narrowed day-to-day (p value < 0.05), suggesting ongoing improvement during training. By the last day of the course, there were no statistically significant differences between trainees and experts in translational movement, gyroscopic movement, smoothness, or total path length; yet on average trainees took 28 s (95% CI [14.7-40.3] seconds) more to acquire a clip.</p><p><strong>Conclusions: </strong>We detected improved ultrasound probe motion economy among internal medicine trainees during a 5-day training course in cardiac POCUS using an inexpensive probe tracking device. Objectively quantifying probe motion economy may help assess a trainee's level of proficiency in this skill and individualize their POCUS training.</p>","PeriodicalId":36911,"journal":{"name":"Ultrasound Journal","volume":"16 1","pages":"5"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828286/pdf/","citationCount":"0","resultStr":"{\"title\":\"Change in economy of ultrasound probe motion among general medicine trainees.\",\"authors\":\"Gerard Salame, Matthew Holden, Brian P Lucas, Albert Portillo\",\"doi\":\"10.1186/s13089-023-00345-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To observe change in economy of 9 ultrasound probe movement metrics among internal medicine trainees during a 5-day training course in cardiac point of care ultrasound (POCUS).</p><p><strong>Methods: </strong>We used a novel probe tracking device to record nine features of ultrasound probe movement, while trainees and experts optimized ultrasound clips on the same volunteer patients. These features included translational movements, gyroscopic movements (titling, rocking, and rotation), smoothness, total path length, and scanning time. We determined the adjusted difference between each trainee's movements and the mean value of the experts' movements for each patient. We then used a mixed effects model to trend average the adjusted differences between trainees and experts throughout the 5 days of the course.</p><p><strong>Results: </strong>Fifteen trainees were enrolled. Three echocardiographer technicians and the course director served as experts. Across 16 unique patients, 294 ultrasound clips were acquired. For all 9 movements, the adjusted difference between trainees and experts narrowed day-to-day (p value < 0.05), suggesting ongoing improvement during training. By the last day of the course, there were no statistically significant differences between trainees and experts in translational movement, gyroscopic movement, smoothness, or total path length; yet on average trainees took 28 s (95% CI [14.7-40.3] seconds) more to acquire a clip.</p><p><strong>Conclusions: </strong>We detected improved ultrasound probe motion economy among internal medicine trainees during a 5-day training course in cardiac POCUS using an inexpensive probe tracking device. Objectively quantifying probe motion economy may help assess a trainee's level of proficiency in this skill and individualize their POCUS training.</p>\",\"PeriodicalId\":36911,\"journal\":{\"name\":\"Ultrasound Journal\",\"volume\":\"16 1\",\"pages\":\"5\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828286/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasound Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13089-023-00345-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasound Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13089-023-00345-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Change in economy of ultrasound probe motion among general medicine trainees.
Objectives: To observe change in economy of 9 ultrasound probe movement metrics among internal medicine trainees during a 5-day training course in cardiac point of care ultrasound (POCUS).
Methods: We used a novel probe tracking device to record nine features of ultrasound probe movement, while trainees and experts optimized ultrasound clips on the same volunteer patients. These features included translational movements, gyroscopic movements (titling, rocking, and rotation), smoothness, total path length, and scanning time. We determined the adjusted difference between each trainee's movements and the mean value of the experts' movements for each patient. We then used a mixed effects model to trend average the adjusted differences between trainees and experts throughout the 5 days of the course.
Results: Fifteen trainees were enrolled. Three echocardiographer technicians and the course director served as experts. Across 16 unique patients, 294 ultrasound clips were acquired. For all 9 movements, the adjusted difference between trainees and experts narrowed day-to-day (p value < 0.05), suggesting ongoing improvement during training. By the last day of the course, there were no statistically significant differences between trainees and experts in translational movement, gyroscopic movement, smoothness, or total path length; yet on average trainees took 28 s (95% CI [14.7-40.3] seconds) more to acquire a clip.
Conclusions: We detected improved ultrasound probe motion economy among internal medicine trainees during a 5-day training course in cardiac POCUS using an inexpensive probe tracking device. Objectively quantifying probe motion economy may help assess a trainee's level of proficiency in this skill and individualize their POCUS training.