Shekina Gonzalez-Ferrer, Hernán F Peñaloza, Rick van der Geest, Zeyu Xiong, Atish Gheware, Mohammadreza Tabary, Megan Kochin, Kathryn Dalton, Henry Zou, Dequan Lou, Karina Lockwood, Yingze Zhang, William G Bain, Rama K Mallampalli, Anuradha Ray, Prabir Ray, Daria Van Tyne, Kong Chen, Janet S Lee
{"title":"STAT1 利用髓系细胞外在机制调节中性粒细胞反应并提供对侵袭性肺炎克雷伯氏菌感染的保护。","authors":"Shekina Gonzalez-Ferrer, Hernán F Peñaloza, Rick van der Geest, Zeyu Xiong, Atish Gheware, Mohammadreza Tabary, Megan Kochin, Kathryn Dalton, Henry Zou, Dequan Lou, Karina Lockwood, Yingze Zhang, William G Bain, Rama K Mallampalli, Anuradha Ray, Prabir Ray, Daria Van Tyne, Kong Chen, Janet S Lee","doi":"10.4049/immunohorizons.2300104","DOIUrl":null,"url":null,"abstract":"<p><p>Klebsiella pneumoniae (KP) is an extracellular Gram-negative bacterium that causes infections in the lower respiratory and urinary tracts and the bloodstream. STAT1 is a master transcription factor that acts to maintain T cell quiescence under homeostatic conditions. Although STAT1 helps defend against systemic spread of acute KP intrapulmonary infection, whether STAT1 regulation of T cell homeostasis impacts pulmonary host defense during acute bacterial infection and injury is less clear. Using a clinical KP respiratory isolate and a pneumonia mouse model, we found that STAT1 deficiency led to an early neutrophil-dominant transcriptional profile and neutrophil recruitment in the lung preceding widespread bacterial dissemination and lung injury development. Yet, myeloid cell STAT1 was dispensable for control of KP proliferation and dissemination, because myeloid cell-specific STAT1-deficient (LysMCre/WT;Stat1fl/fl) mice showed bacterial burden in the lung, liver, and kidney similar to that of their wild-type littermates. Surprisingly, IL-17-producing CD4+ T cells infiltrated Stat1-/- murine lungs early during KP infection. The increase in Th17 cells in the lung was not due to preexisting immunity against KP and was consistent with circulating rather than tissue-resident CD4+ T cells. However, blocking global IL-17 signaling with anti-IL-17RC administration led to increased proliferation and dissemination of KP, suggesting that IL-17 provided by other innate immune cells is essential in defense against KP. Contrastingly, depletion of CD4+ T cells reduced Stat1-/- murine lung bacterial burden, indicating that early CD4+ T cell activation in the setting of global STAT1 deficiency is pathogenic. Altogether, our findings suggest that STAT1 employs myeloid cell-extrinsic mechanisms to regulate neutrophil responses and provides protection against invasive KP by restricting nonspecific CD4+ T cell activation and immunopathology in the lung.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832384/pdf/","citationCount":"0","resultStr":"{\"title\":\"STAT1 Employs Myeloid Cell-Extrinsic Mechanisms to Regulate the Neutrophil Response and Provide Protection against Invasive Klebsiella pneumoniae Lung Infection.\",\"authors\":\"Shekina Gonzalez-Ferrer, Hernán F Peñaloza, Rick van der Geest, Zeyu Xiong, Atish Gheware, Mohammadreza Tabary, Megan Kochin, Kathryn Dalton, Henry Zou, Dequan Lou, Karina Lockwood, Yingze Zhang, William G Bain, Rama K Mallampalli, Anuradha Ray, Prabir Ray, Daria Van Tyne, Kong Chen, Janet S Lee\",\"doi\":\"10.4049/immunohorizons.2300104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Klebsiella pneumoniae (KP) is an extracellular Gram-negative bacterium that causes infections in the lower respiratory and urinary tracts and the bloodstream. STAT1 is a master transcription factor that acts to maintain T cell quiescence under homeostatic conditions. Although STAT1 helps defend against systemic spread of acute KP intrapulmonary infection, whether STAT1 regulation of T cell homeostasis impacts pulmonary host defense during acute bacterial infection and injury is less clear. Using a clinical KP respiratory isolate and a pneumonia mouse model, we found that STAT1 deficiency led to an early neutrophil-dominant transcriptional profile and neutrophil recruitment in the lung preceding widespread bacterial dissemination and lung injury development. Yet, myeloid cell STAT1 was dispensable for control of KP proliferation and dissemination, because myeloid cell-specific STAT1-deficient (LysMCre/WT;Stat1fl/fl) mice showed bacterial burden in the lung, liver, and kidney similar to that of their wild-type littermates. Surprisingly, IL-17-producing CD4+ T cells infiltrated Stat1-/- murine lungs early during KP infection. The increase in Th17 cells in the lung was not due to preexisting immunity against KP and was consistent with circulating rather than tissue-resident CD4+ T cells. However, blocking global IL-17 signaling with anti-IL-17RC administration led to increased proliferation and dissemination of KP, suggesting that IL-17 provided by other innate immune cells is essential in defense against KP. Contrastingly, depletion of CD4+ T cells reduced Stat1-/- murine lung bacterial burden, indicating that early CD4+ T cell activation in the setting of global STAT1 deficiency is pathogenic. Altogether, our findings suggest that STAT1 employs myeloid cell-extrinsic mechanisms to regulate neutrophil responses and provides protection against invasive KP by restricting nonspecific CD4+ T cell activation and immunopathology in the lung.</p>\",\"PeriodicalId\":94037,\"journal\":{\"name\":\"ImmunoHorizons\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832384/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ImmunoHorizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4049/immunohorizons.2300104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2300104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
肺炎克雷伯菌(KP)是一种细胞外革兰阴性菌,可引起下呼吸道、泌尿道和血液感染。STAT1 是一种主转录因子,其作用是在平衡条件下维持 T 细胞的静止状态。虽然 STAT1 有助于抵御急性 KP 肺内感染的全身传播,但 STAT1 对 T 细胞平衡的调节是否会影响急性细菌感染和损伤期间的肺部宿主防御还不太清楚。通过使用临床 KP 呼吸道分离物和肺炎小鼠模型,我们发现 STAT1 缺乏会导致早期中性粒细胞占优势的转录谱和中性粒细胞在细菌广泛传播和肺损伤发生之前在肺部的招募。然而,髓系细胞 STAT1 在控制 KP 增殖和扩散方面是不可或缺的,因为髓系细胞特异性 STAT1 缺乏(LysMCre/WT;Stat1fl/fl)小鼠在肺、肝和肾中表现出的细菌负荷与野生型同系小鼠相似。令人惊讶的是,在 KP 感染早期,产生 IL-17 的 CD4+ T 细胞浸润了 Stat1-/- 小鼠的肺部。肺中Th17细胞的增加并不是由于预先存在的抗KP免疫,而是与循环而非组织驻留的CD4+ T细胞一致。然而,使用抗IL-17RC阻断IL-17信号传导会导致KP的增殖和扩散增加,这表明其他先天性免疫细胞提供的IL-17在抵御KP的过程中是必不可少的。与此相反,CD4+ T细胞的消耗减少了Stat1-/-小鼠肺部的细菌负担,这表明在STAT1全面缺乏的情况下,CD4+ T细胞的早期激活是致病的。总之,我们的研究结果表明,STAT1 利用骨髓细胞外在机制来调节中性粒细胞反应,并通过限制非特异性 CD4+ T 细胞活化和肺部免疫病理来提供对侵袭性 KP 的保护。
STAT1 Employs Myeloid Cell-Extrinsic Mechanisms to Regulate the Neutrophil Response and Provide Protection against Invasive Klebsiella pneumoniae Lung Infection.
Klebsiella pneumoniae (KP) is an extracellular Gram-negative bacterium that causes infections in the lower respiratory and urinary tracts and the bloodstream. STAT1 is a master transcription factor that acts to maintain T cell quiescence under homeostatic conditions. Although STAT1 helps defend against systemic spread of acute KP intrapulmonary infection, whether STAT1 regulation of T cell homeostasis impacts pulmonary host defense during acute bacterial infection and injury is less clear. Using a clinical KP respiratory isolate and a pneumonia mouse model, we found that STAT1 deficiency led to an early neutrophil-dominant transcriptional profile and neutrophil recruitment in the lung preceding widespread bacterial dissemination and lung injury development. Yet, myeloid cell STAT1 was dispensable for control of KP proliferation and dissemination, because myeloid cell-specific STAT1-deficient (LysMCre/WT;Stat1fl/fl) mice showed bacterial burden in the lung, liver, and kidney similar to that of their wild-type littermates. Surprisingly, IL-17-producing CD4+ T cells infiltrated Stat1-/- murine lungs early during KP infection. The increase in Th17 cells in the lung was not due to preexisting immunity against KP and was consistent with circulating rather than tissue-resident CD4+ T cells. However, blocking global IL-17 signaling with anti-IL-17RC administration led to increased proliferation and dissemination of KP, suggesting that IL-17 provided by other innate immune cells is essential in defense against KP. Contrastingly, depletion of CD4+ T cells reduced Stat1-/- murine lung bacterial burden, indicating that early CD4+ T cell activation in the setting of global STAT1 deficiency is pathogenic. Altogether, our findings suggest that STAT1 employs myeloid cell-extrinsic mechanisms to regulate neutrophil responses and provides protection against invasive KP by restricting nonspecific CD4+ T cell activation and immunopathology in the lung.