Regulatory T cells in the tumor microenvironment display a unique chromatin accessibility profile.

Q3 Medicine ImmunoHorizons Pub Date : 2025-02-18 DOI:10.1093/immhor/vlae014
Rebekah E Dadey, Jian Cui, Dhivyaa Rajasundaram, Hiroshi Yano, Chang Liu, Jonathan A Cohen, Andrew W Liu, Daniel H Kaplan, Creg J Workman, Dario A A Vignali
{"title":"Regulatory T cells in the tumor microenvironment display a unique chromatin accessibility profile.","authors":"Rebekah E Dadey, Jian Cui, Dhivyaa Rajasundaram, Hiroshi Yano, Chang Liu, Jonathan A Cohen, Andrew W Liu, Daniel H Kaplan, Creg J Workman, Dario A A Vignali","doi":"10.1093/immhor/vlae014","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory T cells (Tregs) are a suppressive CD4+ T cell population that limit the antitumor immune response. In this study, we analyzed the chromatin accessibility of Tregs in the murine tumor microenvironment (TME) to identify tumor-specific accessible peaks and if these are altered over time in the tumor microenvironment, with or without anti-PD-1 immunotherapy. We found that despite little change in chromatin accessibility of Tregs in the tumor over time, Tregs have a distinct chromatin accessibility signature in the TME compared with Tregs in the periphery. This distinct tumor Treg chromatin accessibility profile highlights reduced accessibility at loci important for an CD4+ conventional T cell (CD4+ Foxp3-) effector phenotype. Analysis of chromatin accessibility in Tregs from B16 and MC38 tumor models indicated that Tregs from skin-resident tumors are most similar to naïve skin resident Tregs but still bear key differences attributable to the TME. We also found that Tregs do not alter their transcriptome or chromatin accessibility following immunotherapy. We conclude that although chromatin accessibility in Tregs is somewhat similar to their tissue residency, the TME may drive a unique chromatin accessibility profile. Treg chromatin accessibility in the tumor appears remarkably stable and unaltered by tumor type, over time, or following immunotherapy.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"9 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immhor/vlae014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Regulatory T cells (Tregs) are a suppressive CD4+ T cell population that limit the antitumor immune response. In this study, we analyzed the chromatin accessibility of Tregs in the murine tumor microenvironment (TME) to identify tumor-specific accessible peaks and if these are altered over time in the tumor microenvironment, with or without anti-PD-1 immunotherapy. We found that despite little change in chromatin accessibility of Tregs in the tumor over time, Tregs have a distinct chromatin accessibility signature in the TME compared with Tregs in the periphery. This distinct tumor Treg chromatin accessibility profile highlights reduced accessibility at loci important for an CD4+ conventional T cell (CD4+ Foxp3-) effector phenotype. Analysis of chromatin accessibility in Tregs from B16 and MC38 tumor models indicated that Tregs from skin-resident tumors are most similar to naïve skin resident Tregs but still bear key differences attributable to the TME. We also found that Tregs do not alter their transcriptome or chromatin accessibility following immunotherapy. We conclude that although chromatin accessibility in Tregs is somewhat similar to their tissue residency, the TME may drive a unique chromatin accessibility profile. Treg chromatin accessibility in the tumor appears remarkably stable and unaltered by tumor type, over time, or following immunotherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Chronic conditions, disability, and quality of life in older adults with multimorbidity in Spain
IF 8 2区 医学European Journal of Internal MedicinePub Date : 2015-04-01 DOI: 10.1016/j.ejim.2015.02.016
Maria João Forjaz , Carmen Rodriguez-Blazquez , Alba Ayala , Vicente Rodriguez-Rodriguez , Jesús de Pedro-Cuesta , Susana Garcia-Gutierrez , Alexandra Prados-Torres
Functional disability and social participation restriction associated with chronic conditions in middle-aged and older adults
IF 0 Journal of Epidemiology & Community HealthPub Date : 2016-10-17 DOI: 10.1136/jech-2016-207982
L. Griffith, P. Raina, M. Levasseur, N. Sohel, H. Payette, H. Tuokko, E. R. van den Heuvel, A. Wister, A. Gilsing, Christopher J. Patterson
Disease-related disability burden: a comparison of seven chronic conditions in middle-aged and older adults.
IF 4.1 3区 材料科学ACS Applied Electronic MaterialsPub Date : 2021-03-23 DOI: 10.1186/s12877-021-02137-6
Chieh-Ying Chou, Ching-Ju Chiu, Chia-Ming Chang, Chih-Hsing Wu, Feng-Hwa Lu, Jin-Shang Wu, Yi-Ching Yang
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Regulatory T cells in the tumor microenvironment display a unique chromatin accessibility profile. Characterization of immune phenotypes in peripheral blood of adult renal transplant recipients using mass cytometry (CyTOF). Biomarker expression level changes within rectal gut-associated lymphoid tissues in spinal cord-injured rats. Comprehensive immune profiling of dengue and chikungunya viral responses using a novel miniaturized automated whole blood cellular analysis system and mass cytometry in a pediatric cohort in Msambweni, Kenya. IL-27 producers in a neonatal BCG vaccination model are a heterogenous population of myeloid cells that are diverse in phenotype and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1