Alex Ceriani, Michele Dalle Fratte, Gustavo Agosto, Peter Beatrice, Marcella Reguzzoni, Lorenzo Bettucci, David Casini, Bruno Enrico Leone Cerabolini, Antonio Montagnoli
{"title":"从木本和草本外来入侵植物物种中提取的生物炭可能是土壤改良、土壤修复和碳储存的最佳选择","authors":"Alex Ceriani, Michele Dalle Fratte, Gustavo Agosto, Peter Beatrice, Marcella Reguzzoni, Lorenzo Bettucci, David Casini, Bruno Enrico Leone Cerabolini, Antonio Montagnoli","doi":"10.1111/gcbb.13117","DOIUrl":null,"url":null,"abstract":"<p>Invasive alien plant species (IAPS) are a global problem, representing a threat to ecosystem functioning, biodiversity, and human health. Legislation requires the management and eradication of IAPS populations; yet, management practices are costly, require several interventions, and produce large amounts of waste biomass. However, the biomass of eradicated IAPS can become a resource by being used as feedstock for biochar production and, at the same time, implementing the management of IAPS. Here we carried out an in-depth characterization of biochar produced at 550°C derived from 10 (five woody and five herbaceous) widespread IAPS in the central-southern Alps region to determine their potential applications for soil amendment, soil remediation, and carbon storage. Biochar was produced at a laboratory scale, where its physicochemical characteristics, micromorphological features, and lead adsorption from aqueous solutions were measured. To investigate any possible trade-offs among the potential biochar applications, a principal component analysis was performed. IAPS-derived biochars exhibited relevant properties in different fields of application, suggesting that IAPS biomass can be exploited in a circular economy framework. We found coordinated variation and trade-offs from biochars with high stability to biochars with high soil amendment potential (PC1), while the biochar soil remediation potential represents an independent axis of variation (PC2). Specifically, IAPS-derived biochar had species-specific characteristics, with differences between the woody and herbaceous IAPS, the latter being more suitable for soil amendment due to their greater pH, macronutrient content, and macropore area. Biochar derived from woody IAPS showed a greater surface area, smaller pores, and had higher lead adsorption potentials from aqueous solutions, hinting at their higher potential for heavy metal pollution remediation. Moreover, biochar derived from woody IAPS had a higher fixed carbon content, indicating higher carbon stability, and suggesting that their biochar is preferable for carbon sequestration in the view of climate change mitigation.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 2","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13117","citationCount":"0","resultStr":"{\"title\":\"Woody and herbaceous invasive alien plant species-derived biochars are potentially optimal for soil amendment, soil remediation, and carbon storage\",\"authors\":\"Alex Ceriani, Michele Dalle Fratte, Gustavo Agosto, Peter Beatrice, Marcella Reguzzoni, Lorenzo Bettucci, David Casini, Bruno Enrico Leone Cerabolini, Antonio Montagnoli\",\"doi\":\"10.1111/gcbb.13117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Invasive alien plant species (IAPS) are a global problem, representing a threat to ecosystem functioning, biodiversity, and human health. Legislation requires the management and eradication of IAPS populations; yet, management practices are costly, require several interventions, and produce large amounts of waste biomass. However, the biomass of eradicated IAPS can become a resource by being used as feedstock for biochar production and, at the same time, implementing the management of IAPS. Here we carried out an in-depth characterization of biochar produced at 550°C derived from 10 (five woody and five herbaceous) widespread IAPS in the central-southern Alps region to determine their potential applications for soil amendment, soil remediation, and carbon storage. Biochar was produced at a laboratory scale, where its physicochemical characteristics, micromorphological features, and lead adsorption from aqueous solutions were measured. To investigate any possible trade-offs among the potential biochar applications, a principal component analysis was performed. IAPS-derived biochars exhibited relevant properties in different fields of application, suggesting that IAPS biomass can be exploited in a circular economy framework. We found coordinated variation and trade-offs from biochars with high stability to biochars with high soil amendment potential (PC1), while the biochar soil remediation potential represents an independent axis of variation (PC2). Specifically, IAPS-derived biochar had species-specific characteristics, with differences between the woody and herbaceous IAPS, the latter being more suitable for soil amendment due to their greater pH, macronutrient content, and macropore area. Biochar derived from woody IAPS showed a greater surface area, smaller pores, and had higher lead adsorption potentials from aqueous solutions, hinting at their higher potential for heavy metal pollution remediation. Moreover, biochar derived from woody IAPS had a higher fixed carbon content, indicating higher carbon stability, and suggesting that their biochar is preferable for carbon sequestration in the view of climate change mitigation.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 2\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13117\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13117\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13117","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Woody and herbaceous invasive alien plant species-derived biochars are potentially optimal for soil amendment, soil remediation, and carbon storage
Invasive alien plant species (IAPS) are a global problem, representing a threat to ecosystem functioning, biodiversity, and human health. Legislation requires the management and eradication of IAPS populations; yet, management practices are costly, require several interventions, and produce large amounts of waste biomass. However, the biomass of eradicated IAPS can become a resource by being used as feedstock for biochar production and, at the same time, implementing the management of IAPS. Here we carried out an in-depth characterization of biochar produced at 550°C derived from 10 (five woody and five herbaceous) widespread IAPS in the central-southern Alps region to determine their potential applications for soil amendment, soil remediation, and carbon storage. Biochar was produced at a laboratory scale, where its physicochemical characteristics, micromorphological features, and lead adsorption from aqueous solutions were measured. To investigate any possible trade-offs among the potential biochar applications, a principal component analysis was performed. IAPS-derived biochars exhibited relevant properties in different fields of application, suggesting that IAPS biomass can be exploited in a circular economy framework. We found coordinated variation and trade-offs from biochars with high stability to biochars with high soil amendment potential (PC1), while the biochar soil remediation potential represents an independent axis of variation (PC2). Specifically, IAPS-derived biochar had species-specific characteristics, with differences between the woody and herbaceous IAPS, the latter being more suitable for soil amendment due to their greater pH, macronutrient content, and macropore area. Biochar derived from woody IAPS showed a greater surface area, smaller pores, and had higher lead adsorption potentials from aqueous solutions, hinting at their higher potential for heavy metal pollution remediation. Moreover, biochar derived from woody IAPS had a higher fixed carbon content, indicating higher carbon stability, and suggesting that their biochar is preferable for carbon sequestration in the view of climate change mitigation.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.