Zhiguo Sun, Ye Wu, Hongliang Chen, Xiaoyun Wu, Yanmei Zhou, Shigang Han, Yan Luo, Haibo Zeng
{"title":"影响掺锰卤化物包晶石纳米晶体光学性能的自净化技术","authors":"Zhiguo Sun, Ye Wu, Hongliang Chen, Xiaoyun Wu, Yanmei Zhou, Shigang Han, Yan Luo, Haibo Zeng","doi":"10.1002/ppsc.202300167","DOIUrl":null,"url":null,"abstract":"Component doping is the fundamental topic for modulating the properties of semiconductor materials. The introduction of doping ions into lead halide perovskites (LHPs) can not only maintain the excellent photoelectric properties but also enhance the stability of LHPs in open air and thermal environments. However, due to the “self-purification” effect in crystallography, there is an inherent trend to pop doping ions out of LHPs lattice. In this work, it is confirmed that in Mn<sup>2+</sup> doped LHPs nanocrystals (NCs) the discharge of Mn<sup>2+</sup> will be accelerated at higher temperatures. It is also proved that even at room temperature, the dopants in LHPs NCs will also actively “migrate”, resulting in declined optical performance. Therefore, for cation alloying/doping LHPs NCs, the migration of doping ions in the material should be considered in addition to the intrinsic halide migration characteristics. This work will provide a benign reference for application of doped LHPs NCs.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"213 Suppl 2 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Purification Affecting the Optical Performance of Mn-Doped Halide Perovskite Nanocrystals\",\"authors\":\"Zhiguo Sun, Ye Wu, Hongliang Chen, Xiaoyun Wu, Yanmei Zhou, Shigang Han, Yan Luo, Haibo Zeng\",\"doi\":\"10.1002/ppsc.202300167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Component doping is the fundamental topic for modulating the properties of semiconductor materials. The introduction of doping ions into lead halide perovskites (LHPs) can not only maintain the excellent photoelectric properties but also enhance the stability of LHPs in open air and thermal environments. However, due to the “self-purification” effect in crystallography, there is an inherent trend to pop doping ions out of LHPs lattice. In this work, it is confirmed that in Mn<sup>2+</sup> doped LHPs nanocrystals (NCs) the discharge of Mn<sup>2+</sup> will be accelerated at higher temperatures. It is also proved that even at room temperature, the dopants in LHPs NCs will also actively “migrate”, resulting in declined optical performance. Therefore, for cation alloying/doping LHPs NCs, the migration of doping ions in the material should be considered in addition to the intrinsic halide migration characteristics. This work will provide a benign reference for application of doped LHPs NCs.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":\"213 Suppl 2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202300167\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202300167","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Self-Purification Affecting the Optical Performance of Mn-Doped Halide Perovskite Nanocrystals
Component doping is the fundamental topic for modulating the properties of semiconductor materials. The introduction of doping ions into lead halide perovskites (LHPs) can not only maintain the excellent photoelectric properties but also enhance the stability of LHPs in open air and thermal environments. However, due to the “self-purification” effect in crystallography, there is an inherent trend to pop doping ions out of LHPs lattice. In this work, it is confirmed that in Mn2+ doped LHPs nanocrystals (NCs) the discharge of Mn2+ will be accelerated at higher temperatures. It is also proved that even at room temperature, the dopants in LHPs NCs will also actively “migrate”, resulting in declined optical performance. Therefore, for cation alloying/doping LHPs NCs, the migration of doping ions in the material should be considered in addition to the intrinsic halide migration characteristics. This work will provide a benign reference for application of doped LHPs NCs.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.