在玉米秸秆填充的煤矿煤层中协同增加生物甲烷的实地条件

IF 5.9 3区 工程技术 Q1 AGRONOMY Global Change Biology Bioenergy Pub Date : 2024-01-25 DOI:10.1111/gcbb.13127
Guofu Li, Hongyu Guo, Minglu Zhang, Linyong Chen, Shufeng Zhao, Guoqin Wei
{"title":"在玉米秸秆填充的煤矿煤层中协同增加生物甲烷的实地条件","authors":"Guofu Li,&nbsp;Hongyu Guo,&nbsp;Minglu Zhang,&nbsp;Linyong Chen,&nbsp;Shufeng Zhao,&nbsp;Guoqin Wei","doi":"10.1111/gcbb.13127","DOIUrl":null,"url":null,"abstract":"<p>Synergistic fermentation of coal and corn straw is an effective tool to increase biomethane production. However, a large gap exists between the biomethane production conditions of corn straw filling coal mine goafs and laboratory experiments. In order to determine the effect of the field environment on synergistic biomethane production, biomethane production experiments with coal and corn straw were carried out under different conditions to find the key factors restricting the potential of biomethane production. The obtained results showed that various bacterial sources had significant influences on the biomethane production of coal and corn straw, and domesticated bacterial sources provided fermentation systems with more efficient biomethane production capacities than mine water sources. Biomethane production of coal and corn straw was relatively high under mixed conditions, but it was also promoted under unmixed conditions. Different inorganic minerals had different effects on synergistic biomethane production, which varied. For example, calcite, montmorillonite, and kaolin are common minerals in coal-bearing strata that significantly enhance synergistic biomethane production of coal and corn straw. However, pyrite was found to significantly inhibit the synergistic biomethane production effect of coal and corn straw. Highly metamorphosed anthracite coal also presented biomethane production potential when stimulated by corn straw as a carbon source. The obtained results revealed the influences of different field conditions on the biomethane production of coal and corn straw and provided a reference for the field application of corn straw filling in coal mine goafs.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 2","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13127","citationCount":"0","resultStr":"{\"title\":\"Field conditions for the synergistic increase of biomethane in the goaf of coal mines filled with corn straw\",\"authors\":\"Guofu Li,&nbsp;Hongyu Guo,&nbsp;Minglu Zhang,&nbsp;Linyong Chen,&nbsp;Shufeng Zhao,&nbsp;Guoqin Wei\",\"doi\":\"10.1111/gcbb.13127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synergistic fermentation of coal and corn straw is an effective tool to increase biomethane production. However, a large gap exists between the biomethane production conditions of corn straw filling coal mine goafs and laboratory experiments. In order to determine the effect of the field environment on synergistic biomethane production, biomethane production experiments with coal and corn straw were carried out under different conditions to find the key factors restricting the potential of biomethane production. The obtained results showed that various bacterial sources had significant influences on the biomethane production of coal and corn straw, and domesticated bacterial sources provided fermentation systems with more efficient biomethane production capacities than mine water sources. Biomethane production of coal and corn straw was relatively high under mixed conditions, but it was also promoted under unmixed conditions. Different inorganic minerals had different effects on synergistic biomethane production, which varied. For example, calcite, montmorillonite, and kaolin are common minerals in coal-bearing strata that significantly enhance synergistic biomethane production of coal and corn straw. However, pyrite was found to significantly inhibit the synergistic biomethane production effect of coal and corn straw. Highly metamorphosed anthracite coal also presented biomethane production potential when stimulated by corn straw as a carbon source. The obtained results revealed the influences of different field conditions on the biomethane production of coal and corn straw and provided a reference for the field application of corn straw filling in coal mine goafs.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 2\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13127\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13127\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13127","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

煤和玉米秸秆协同发酵是提高生物甲烷产量的有效手段。然而,玉米秸秆填充煤矿煤层的生物甲烷生产条件与实验室实验之间存在很大差距。为了确定田间环境对协同生产生物甲烷的影响,在不同条件下进行了煤和玉米秸秆的生物甲烷生产实验,以找到制约生物甲烷生产潜力的关键因素。结果表明,各种菌源对煤和玉米秸秆的生物甲烷生产有显著影响,与矿井水源相比,驯化菌源提供的发酵系统具有更高效的生物甲烷生产能力。在混合条件下,煤和玉米秸秆的生物甲烷产量相对较高,但在非混合条件下,生物甲烷产量也得到了提高。不同的无机矿物质对协同生物甲烷生产有不同的影响。例如,方解石、蒙脱石和高岭土是含煤地层中常见的矿物,它们能显著提高煤和玉米秸秆的协同生物甲烷产量。然而,黄铁矿却明显抑制了煤和玉米秸秆协同生产生物甲烷的效果。在玉米秸秆作为碳源的刺激下,高变质无烟煤也具有生产生物甲烷的潜力。研究结果揭示了不同田间条件对煤和玉米秸秆产生生物甲烷的影响,为玉米秸秆填充煤矿煤层的田间应用提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Field conditions for the synergistic increase of biomethane in the goaf of coal mines filled with corn straw

Synergistic fermentation of coal and corn straw is an effective tool to increase biomethane production. However, a large gap exists between the biomethane production conditions of corn straw filling coal mine goafs and laboratory experiments. In order to determine the effect of the field environment on synergistic biomethane production, biomethane production experiments with coal and corn straw were carried out under different conditions to find the key factors restricting the potential of biomethane production. The obtained results showed that various bacterial sources had significant influences on the biomethane production of coal and corn straw, and domesticated bacterial sources provided fermentation systems with more efficient biomethane production capacities than mine water sources. Biomethane production of coal and corn straw was relatively high under mixed conditions, but it was also promoted under unmixed conditions. Different inorganic minerals had different effects on synergistic biomethane production, which varied. For example, calcite, montmorillonite, and kaolin are common minerals in coal-bearing strata that significantly enhance synergistic biomethane production of coal and corn straw. However, pyrite was found to significantly inhibit the synergistic biomethane production effect of coal and corn straw. Highly metamorphosed anthracite coal also presented biomethane production potential when stimulated by corn straw as a carbon source. The obtained results revealed the influences of different field conditions on the biomethane production of coal and corn straw and provided a reference for the field application of corn straw filling in coal mine goafs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
期刊最新文献
Combining Eddy Covariance Towers, Field Measurements, and the MEMS 2 Ecosystem Model Improves Confidence in the Climate Impacts of Bioenergy With Carbon Capture and Storage Issue Information Potential U.S. Production of Liquid Hydrocarbons From Biomass With Addition of Massive External Heat and Hydrogen Inputs Comparative Economic Analysis Between Bioenergy and Forage Types of Switchgrass for Sustainable Biofuel Feedstock Production: A Data Envelopment Analysis and Cost–Benefit Analysis Approach Carbon Credits Through Wood Use: Revisiting the Maximum Potential and Sensitivity to Key Assumptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1