Marius Behnecke, Eva Berghaus, Alina Wildeis, Eva Brandes, Svea Petersen
{"title":"Wilhelmy 天平--即使在非平面和复杂几何形状上也能确定浸入角和表面能的简单可靠方法?","authors":"Marius Behnecke, Eva Berghaus, Alina Wildeis, Eva Brandes, Svea Petersen","doi":"10.1002/sia.7287","DOIUrl":null,"url":null,"abstract":"The growing significance of surface properties in modern materials, particularly in medical technology, drives the need for accurate characterization techniques. Traditional contact angle measurements face challenges when applied to intricate surfaces like dental implants. Here, tensiometry applying the Wilhelmy plate method has been described in the last decade to offer one solution for the evaluation of complex surface geometries by quantifying apparent contact angles based on wetting forces. This study evaluates a simple setup employing the Wilhelmy balance concept for immersion angle determination. Instead of using a force sensor as in tensiometers, the wetting force is determined via changes in mass signal by means of an analytical balance available in standard laboratories. The force is thus recorded inverse to conventional tensiometry. The approach was validated on diverse geometries and extended to intricate structures, including plasma-treated dental implants. Results were compared to conventional contact angle analysis systems underlining the reliability of the method in characterizing non-planar and complex surfaces. Additionally, the method was successfully extended to the evaluation of surface energies on planar and non-planar surfaces using various solvent sets. However, results evidenced that specimen geometry can influence the measurements to such an extent that immersion contact angles can no longer be calculated due to capillary effects. An outlook suggests further exploration with a wider range of test liquids to enhance accuracy in surface energy determination.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"62 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wilhelmy balance—A simple and reliable method for determining immersion angles and surface energies even on non-planar and complex geometries?\",\"authors\":\"Marius Behnecke, Eva Berghaus, Alina Wildeis, Eva Brandes, Svea Petersen\",\"doi\":\"10.1002/sia.7287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing significance of surface properties in modern materials, particularly in medical technology, drives the need for accurate characterization techniques. Traditional contact angle measurements face challenges when applied to intricate surfaces like dental implants. Here, tensiometry applying the Wilhelmy plate method has been described in the last decade to offer one solution for the evaluation of complex surface geometries by quantifying apparent contact angles based on wetting forces. This study evaluates a simple setup employing the Wilhelmy balance concept for immersion angle determination. Instead of using a force sensor as in tensiometers, the wetting force is determined via changes in mass signal by means of an analytical balance available in standard laboratories. The force is thus recorded inverse to conventional tensiometry. The approach was validated on diverse geometries and extended to intricate structures, including plasma-treated dental implants. Results were compared to conventional contact angle analysis systems underlining the reliability of the method in characterizing non-planar and complex surfaces. Additionally, the method was successfully extended to the evaluation of surface energies on planar and non-planar surfaces using various solvent sets. However, results evidenced that specimen geometry can influence the measurements to such an extent that immersion contact angles can no longer be calculated due to capillary effects. An outlook suggests further exploration with a wider range of test liquids to enhance accuracy in surface energy determination.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7287\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7287","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Wilhelmy balance—A simple and reliable method for determining immersion angles and surface energies even on non-planar and complex geometries?
The growing significance of surface properties in modern materials, particularly in medical technology, drives the need for accurate characterization techniques. Traditional contact angle measurements face challenges when applied to intricate surfaces like dental implants. Here, tensiometry applying the Wilhelmy plate method has been described in the last decade to offer one solution for the evaluation of complex surface geometries by quantifying apparent contact angles based on wetting forces. This study evaluates a simple setup employing the Wilhelmy balance concept for immersion angle determination. Instead of using a force sensor as in tensiometers, the wetting force is determined via changes in mass signal by means of an analytical balance available in standard laboratories. The force is thus recorded inverse to conventional tensiometry. The approach was validated on diverse geometries and extended to intricate structures, including plasma-treated dental implants. Results were compared to conventional contact angle analysis systems underlining the reliability of the method in characterizing non-planar and complex surfaces. Additionally, the method was successfully extended to the evaluation of surface energies on planar and non-planar surfaces using various solvent sets. However, results evidenced that specimen geometry can influence the measurements to such an extent that immersion contact angles can no longer be calculated due to capillary effects. An outlook suggests further exploration with a wider range of test liquids to enhance accuracy in surface energy determination.
期刊介绍:
Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).