{"title":"积分分数福卡斯-勒内尔斯方程的黎曼-希尔伯特方法","authors":"Ling An, Liming Ling","doi":"10.1111/sapm.12672","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a new integrable fractional Fokas–Lenells equation by using the completeness of the squared eigenfunctions, dispersion relation, and inverse scattering transform. To solve this equation, we employ the Riemann–Hilbert approach. Specifically, we focus on the case of the reflectionless potential with a simple pole for the zero boundary condition. And we provide the fractional <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-soliton solution in determinant form. In addition, we prove the fractional one-soliton solution rigorously. Notably, we demonstrate that as <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>t</mi>\n <mo>|</mo>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$|t|\\rightarrow \\infty$</annotation>\n </semantics></math>, the fractional <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-soliton solution can be expressed as a linear combination of <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> fractional single-soliton solutions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Riemann–Hilbert approach for the integrable fractional Fokas–Lenells equation\",\"authors\":\"Ling An, Liming Ling\",\"doi\":\"10.1111/sapm.12672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a new integrable fractional Fokas–Lenells equation by using the completeness of the squared eigenfunctions, dispersion relation, and inverse scattering transform. To solve this equation, we employ the Riemann–Hilbert approach. Specifically, we focus on the case of the reflectionless potential with a simple pole for the zero boundary condition. And we provide the fractional <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>-soliton solution in determinant form. In addition, we prove the fractional one-soliton solution rigorously. Notably, we demonstrate that as <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>t</mi>\\n <mo>|</mo>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$|t|\\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>, the fractional <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>-soliton solution can be expressed as a linear combination of <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math> fractional single-soliton solutions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本文利用平方特征函数的完备性、色散关系和反散射变换,提出了一种新的可积分分式 Fokas-Lenells 方程。为了求解这个方程,我们采用了黎曼-希尔伯特方法。具体来说,我们重点研究了零边界条件下具有简单极点的无反射势的情况。我们提供了行列式形式的分数 N 索利子解。此外,我们还严格证明了分数单孑子解。值得注意的是,我们证明了当|t|→∞$|t|rightarrow \infty$时,分数 N-soliton解可以表示为N个分数单soliton解的线性组合。
The Riemann–Hilbert approach for the integrable fractional Fokas–Lenells equation
In this paper, we propose a new integrable fractional Fokas–Lenells equation by using the completeness of the squared eigenfunctions, dispersion relation, and inverse scattering transform. To solve this equation, we employ the Riemann–Hilbert approach. Specifically, we focus on the case of the reflectionless potential with a simple pole for the zero boundary condition. And we provide the fractional -soliton solution in determinant form. In addition, we prove the fractional one-soliton solution rigorously. Notably, we demonstrate that as , the fractional -soliton solution can be expressed as a linear combination of fractional single-soliton solutions.