低压冷喷涂料在腐蚀钢桥上的致密性和附着力

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Steel Structures Pub Date : 2024-01-27 DOI:10.1007/s13296-023-00803-6
{"title":"低压冷喷涂料在腐蚀钢桥上的致密性和附着力","authors":"","doi":"10.1007/s13296-023-00803-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>High-strength bolt attachment parts of steel bridges are prone to corrosion at an early stage, and blast nozzles and power tools cannot be inserted due to the structural shape during repairs, and there are many cases where rust remains partially. To solve such a problem, the Cold Spray technology, which uses a powder that mixes zinc and alumina, exhibits corrosion resistance by depositing a film even if rust remains. In this paper, first the anticorrosion mechanism on the residual rust was examined by focusing on the permeation prevention of the corrosion factor of the Cold Spray anticorrosion film and the adhesion of the residual rust boundary. Findings indicate that the Cold Spray anticorrosion film exhibits a porosity approximately one-tenth that of films engendered via the thermal spraying method, thereby constituting a denser film with heightened environmental barrier attributes. The firm adherence of the Cold Spray anticorrosion film to the residual rust interface is explained by differences in hardness between Cold Spray, residual rust, and zinc. Furthermore, the physical characteristics of zinc undergo modifications influenced by the temperature environment during construction, imparting a plasticity to zinc on uneven rust surfaces.</p>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denseness and Adhesion of Low-Pressure Cold Spray Coating to Corroded Steel Bridges\",\"authors\":\"\",\"doi\":\"10.1007/s13296-023-00803-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>High-strength bolt attachment parts of steel bridges are prone to corrosion at an early stage, and blast nozzles and power tools cannot be inserted due to the structural shape during repairs, and there are many cases where rust remains partially. To solve such a problem, the Cold Spray technology, which uses a powder that mixes zinc and alumina, exhibits corrosion resistance by depositing a film even if rust remains. In this paper, first the anticorrosion mechanism on the residual rust was examined by focusing on the permeation prevention of the corrosion factor of the Cold Spray anticorrosion film and the adhesion of the residual rust boundary. Findings indicate that the Cold Spray anticorrosion film exhibits a porosity approximately one-tenth that of films engendered via the thermal spraying method, thereby constituting a denser film with heightened environmental barrier attributes. The firm adherence of the Cold Spray anticorrosion film to the residual rust interface is explained by differences in hardness between Cold Spray, residual rust, and zinc. Furthermore, the physical characteristics of zinc undergo modifications influenced by the temperature environment during construction, imparting a plasticity to zinc on uneven rust surfaces.</p>\",\"PeriodicalId\":596,\"journal\":{\"name\":\"International Journal of Steel Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Steel Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13296-023-00803-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13296-023-00803-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 钢结构桥梁的高强度螺栓连接部位在早期很容易锈蚀,在维修时由于结构形状的原因无法插入喷砂喷嘴和电动工具,部分残留锈迹的情况很多。为了解决这一问题,冷喷技术使用了锌和氧化铝混合粉末,即使残留锈迹也能沉积成膜,从而表现出抗腐蚀性能。本文首先研究了残锈的防腐机理,重点是冷喷防腐膜的防腐蚀因子渗透和残锈边界的附着力。研究结果表明,冷喷防腐膜的孔隙率约为热喷涂法生成的防腐膜的十分之一,因此形成的防腐膜更加致密,具有更高的环境阻隔属性。冷喷防腐膜在残锈界面上的牢固附着力是由冷喷、残锈和锌之间的硬度差异造成的。此外,锌的物理特性在施工过程中会受到温度环境的影响而发生变化,从而使锌在不平整的锈蚀表面上具有可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denseness and Adhesion of Low-Pressure Cold Spray Coating to Corroded Steel Bridges

Abstract

High-strength bolt attachment parts of steel bridges are prone to corrosion at an early stage, and blast nozzles and power tools cannot be inserted due to the structural shape during repairs, and there are many cases where rust remains partially. To solve such a problem, the Cold Spray technology, which uses a powder that mixes zinc and alumina, exhibits corrosion resistance by depositing a film even if rust remains. In this paper, first the anticorrosion mechanism on the residual rust was examined by focusing on the permeation prevention of the corrosion factor of the Cold Spray anticorrosion film and the adhesion of the residual rust boundary. Findings indicate that the Cold Spray anticorrosion film exhibits a porosity approximately one-tenth that of films engendered via the thermal spraying method, thereby constituting a denser film with heightened environmental barrier attributes. The firm adherence of the Cold Spray anticorrosion film to the residual rust interface is explained by differences in hardness between Cold Spray, residual rust, and zinc. Furthermore, the physical characteristics of zinc undergo modifications influenced by the temperature environment during construction, imparting a plasticity to zinc on uneven rust surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Steel Structures
International Journal of Steel Structures 工程技术-工程:土木
CiteScore
2.70
自引率
13.30%
发文量
122
审稿时长
12 months
期刊介绍: The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.
期刊最新文献
Numerical Analysis of Sectional Defective Steel Tube Repaired Using Multilayered CFRP Bonding Subjected to Axial Force or Bending Average Compressive Stress–Strain Curves of Steel Plates for Bridges Under Axial Longitudinal Compression Experimental and Numerical Study on Behaviors of Double-shear Four-Bolted Connection with Austenitic Stainless Steel Flexural Analysis of Elastically Supported Bidirectional Monel–Zirconia Skew FGM Plate Subjected to Line Load Using Meshless Collocation Technique Investigation of the Fracture Behavior of High-Strength Structural Steel and Welds based on Micromechanical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1