用于微电子学应用的 fs 脉冲紫外激光诱导块状铜的反向转移

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronic Engineering Pub Date : 2024-01-28 DOI:10.1016/j.mee.2024.112143
Tommaso Raveglia, Dario Crimella, Ali Gökhan Demir
{"title":"用于微电子学应用的 fs 脉冲紫外激光诱导块状铜的反向转移","authors":"Tommaso Raveglia,&nbsp;Dario Crimella,&nbsp;Ali Gökhan Demir","doi":"10.1016/j.mee.2024.112143","DOIUrl":null,"url":null,"abstract":"<div><p>Laser Induced Reverse Transfer (LIRT) is a versatile technique as a single-step deposition method allowing the localized transfer of a variety of different metals and polymers on transparent, ultra-thin and stretchable substrates. Also referred to as laser induced backward transfer (LIBT), the process can be manipulated to transfer material from bulk materials to transparent targets, providing a direct method potentially sustainable to generate microelectronic circuitry. In this work, a fs-pulsed UV laser (343 nm) was employed for the first time to transfer electrically conductive copper tracks and layers from bulk Cu in the form of sheet metal onto ultra-clear soda lime glass slides with sub-micrometric thickness. The process development started from the selection of the materials for adequate energy transfer between the beam source and the donor/receiver combination. In the single-track study, the effect of donor/receiver gap was analyzed while tracks ranges with 5 to 233 nm thickness and 7 to 41 μm average width were produced. Based on the results, multi-track layer deposition was assessed by varying the overlap between the tracks. Functional demonstrator cases were produced. The work confirms the suitability of LIRT as a direct approach to create microelectric circuitry by using readily available and sustainable bulk Cu material.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167931724000121/pdfft?md5=69130f80789fb89b4663a57a0e391311&pid=1-s2.0-S0167931724000121-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Laser induced reverse transfer of bulk Cu with a fs-pulsed UV laser for microelectronics applications\",\"authors\":\"Tommaso Raveglia,&nbsp;Dario Crimella,&nbsp;Ali Gökhan Demir\",\"doi\":\"10.1016/j.mee.2024.112143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser Induced Reverse Transfer (LIRT) is a versatile technique as a single-step deposition method allowing the localized transfer of a variety of different metals and polymers on transparent, ultra-thin and stretchable substrates. Also referred to as laser induced backward transfer (LIBT), the process can be manipulated to transfer material from bulk materials to transparent targets, providing a direct method potentially sustainable to generate microelectronic circuitry. In this work, a fs-pulsed UV laser (343 nm) was employed for the first time to transfer electrically conductive copper tracks and layers from bulk Cu in the form of sheet metal onto ultra-clear soda lime glass slides with sub-micrometric thickness. The process development started from the selection of the materials for adequate energy transfer between the beam source and the donor/receiver combination. In the single-track study, the effect of donor/receiver gap was analyzed while tracks ranges with 5 to 233 nm thickness and 7 to 41 μm average width were produced. Based on the results, multi-track layer deposition was assessed by varying the overlap between the tracks. Functional demonstrator cases were produced. The work confirms the suitability of LIRT as a direct approach to create microelectric circuitry by using readily available and sustainable bulk Cu material.</p></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167931724000121/pdfft?md5=69130f80789fb89b4663a57a0e391311&pid=1-s2.0-S0167931724000121-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167931724000121\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724000121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

激光诱导逆向转移(LIRT)是一种多功能技术,它是一种单步沉积方法,可在透明、超薄和可拉伸基底上局部转移各种不同的金属和聚合物。该过程也被称为激光诱导后向转移(LIBT),可用于将材料从块状材料转移到透明目标上,提供了一种可持续生成微电子电路的直接方法。在这项工作中,我们首次采用了fs脉冲紫外激光(343 nm),将导电铜轨道和铜层从金属板形式的块状铜转移到厚度为亚微米的超透明钠钙玻璃载玻片上。工艺开发从选择材料开始,以便在光束源和供体/接收器组合之间进行充分的能量传递。在单轨研究中,分析了供体/受体间隙的影响,同时制作了厚度为 5 至 233 nm、平均宽度为 7 至 41 μm 的轨道。根据研究结果,通过改变轨道之间的重叠度,对多轨道层沉积进行了评估。生产出了功能性示范案例。这项工作证实了 LIRT 适合作为一种直接方法,利用现成和可持续的大块铜材料制造微电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser induced reverse transfer of bulk Cu with a fs-pulsed UV laser for microelectronics applications

Laser Induced Reverse Transfer (LIRT) is a versatile technique as a single-step deposition method allowing the localized transfer of a variety of different metals and polymers on transparent, ultra-thin and stretchable substrates. Also referred to as laser induced backward transfer (LIBT), the process can be manipulated to transfer material from bulk materials to transparent targets, providing a direct method potentially sustainable to generate microelectronic circuitry. In this work, a fs-pulsed UV laser (343 nm) was employed for the first time to transfer electrically conductive copper tracks and layers from bulk Cu in the form of sheet metal onto ultra-clear soda lime glass slides with sub-micrometric thickness. The process development started from the selection of the materials for adequate energy transfer between the beam source and the donor/receiver combination. In the single-track study, the effect of donor/receiver gap was analyzed while tracks ranges with 5 to 233 nm thickness and 7 to 41 μm average width were produced. Based on the results, multi-track layer deposition was assessed by varying the overlap between the tracks. Functional demonstrator cases were produced. The work confirms the suitability of LIRT as a direct approach to create microelectric circuitry by using readily available and sustainable bulk Cu material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
期刊最新文献
Editorial Board High density nanofluidic channels by self-sealing for metallic nanoparticles detection Etch of nano-TSV with smooth sidewall and excellent selection ratio for backside power delivery network Development of an emulator of the sustainable energy harvesting pad system on a bike lane for charging lithium batteries Wide scan angle multibeam conformal antenna array with novel feeding for mm-wave 5G applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1