{"title":"圆盘和管道中旋转对称流动的扩散增强和泰勒扩散","authors":"Michele Coti Zelati, Michele Dolce, Chia-Chun Lo","doi":"10.1007/s00021-023-00845-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we study the long-time dynamics of passive scalars driven by rotationally symmetric flows. We focus on identifying precise conditions on the velocity field in order to prove enhanced dissipation and Taylor dispersion in three-dimensional infinite pipes. As a byproduct of our analysis, we obtain an enhanced decay for circular flows on a disc of arbitrary radius.\n</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00845-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Diffusion Enhancement and Taylor Dispersion for Rotationally Symmetric Flows in Discs and Pipes\",\"authors\":\"Michele Coti Zelati, Michele Dolce, Chia-Chun Lo\",\"doi\":\"10.1007/s00021-023-00845-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note, we study the long-time dynamics of passive scalars driven by rotationally symmetric flows. We focus on identifying precise conditions on the velocity field in order to prove enhanced dissipation and Taylor dispersion in three-dimensional infinite pipes. As a byproduct of our analysis, we obtain an enhanced decay for circular flows on a disc of arbitrary radius.\\n</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-023-00845-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00845-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00845-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Diffusion Enhancement and Taylor Dispersion for Rotationally Symmetric Flows in Discs and Pipes
In this note, we study the long-time dynamics of passive scalars driven by rotationally symmetric flows. We focus on identifying precise conditions on the velocity field in order to prove enhanced dissipation and Taylor dispersion in three-dimensional infinite pipes. As a byproduct of our analysis, we obtain an enhanced decay for circular flows on a disc of arbitrary radius.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.