用于交通预测的图时空变换器网络

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-01-26 DOI:10.1016/j.bdr.2024.100427
Zhenzhen Zhao , Guojiang Shen , Lei Wang , Xiangjie Kong
{"title":"用于交通预测的图时空变换器网络","authors":"Zhenzhen Zhao ,&nbsp;Guojiang Shen ,&nbsp;Lei Wang ,&nbsp;Xiangjie Kong","doi":"10.1016/j.bdr.2024.100427","DOIUrl":null,"url":null,"abstract":"<div><p><span>Traffic information can reflect the operating status of a city, and accurate traffic forecasting is critical in intelligent transportation systems (ITS) and urban planning. However, traffic information has complex nonlinearity and dynamic spatial-temporal dependencies due to human mobility, bringing new traffic forecasting challenges. This paper proposed a graph spatial-temporal transformer network for </span>traffic prediction<span> (GSTTN) to cope with the above problems. Specifically, the proposed framework explores spatial characteristics of the across-road network of traffic information hidden in human behavior patterns via a multi-view graph convolutional network<span> (GCN). Furthermore, the transformer network with a multi-head attention mechanism is adopted to capture the random disturbance in the time series characteristics of traffic information. As a result, these two components can be used to model spatial relations and temporal trends. Finally, we examine real-world datasets, and the experiments show that the proposed framework outperforms the current state-of-the-art baselines.</span></span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Spatial-Temporal Transformer Network for Traffic Prediction\",\"authors\":\"Zhenzhen Zhao ,&nbsp;Guojiang Shen ,&nbsp;Lei Wang ,&nbsp;Xiangjie Kong\",\"doi\":\"10.1016/j.bdr.2024.100427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Traffic information can reflect the operating status of a city, and accurate traffic forecasting is critical in intelligent transportation systems (ITS) and urban planning. However, traffic information has complex nonlinearity and dynamic spatial-temporal dependencies due to human mobility, bringing new traffic forecasting challenges. This paper proposed a graph spatial-temporal transformer network for </span>traffic prediction<span> (GSTTN) to cope with the above problems. Specifically, the proposed framework explores spatial characteristics of the across-road network of traffic information hidden in human behavior patterns via a multi-view graph convolutional network<span> (GCN). Furthermore, the transformer network with a multi-head attention mechanism is adopted to capture the random disturbance in the time series characteristics of traffic information. As a result, these two components can be used to model spatial relations and temporal trends. Finally, we examine real-world datasets, and the experiments show that the proposed framework outperforms the current state-of-the-art baselines.</span></span></p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579624000030\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000030","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

交通信息可以反映一个城市的运行状况,准确的交通预测对智能交通系统(ITS)和城市规划至关重要。然而,由于人的流动性,交通信息具有复杂的非线性和动态时空依赖性,给交通预测带来了新的挑战。本文提出了一种用于交通预测的图时空变换网络(GSTTN)来应对上述问题。具体来说,本文提出的框架通过多视角图卷积网络(GCN)探索了隐藏在人类行为模式中的跨道路交通信息网络的空间特征。此外,还采用了具有多头关注机制的变压器网络来捕捉交通信息时间序列特征中的随机干扰。因此,这两个组件可用于空间关系和时间趋势建模。最后,我们对真实世界的数据集进行了研究,实验结果表明,所提出的框架优于目前最先进的基线框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph Spatial-Temporal Transformer Network for Traffic Prediction

Traffic information can reflect the operating status of a city, and accurate traffic forecasting is critical in intelligent transportation systems (ITS) and urban planning. However, traffic information has complex nonlinearity and dynamic spatial-temporal dependencies due to human mobility, bringing new traffic forecasting challenges. This paper proposed a graph spatial-temporal transformer network for traffic prediction (GSTTN) to cope with the above problems. Specifically, the proposed framework explores spatial characteristics of the across-road network of traffic information hidden in human behavior patterns via a multi-view graph convolutional network (GCN). Furthermore, the transformer network with a multi-head attention mechanism is adopted to capture the random disturbance in the time series characteristics of traffic information. As a result, these two components can be used to model spatial relations and temporal trends. Finally, we examine real-world datasets, and the experiments show that the proposed framework outperforms the current state-of-the-art baselines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1