Michael Pedowitz, Daniel Lewis, Jennifer DeMell, Daniel J. Pennachio, Jenifer R. Hajzus, Rachael Myers-Ward, Soaram Kim, Kevin M. Daniels
{"title":"在准自由双层外延石墨烯-碳化硅衬底上绿色生长混合价锰氧化物","authors":"Michael Pedowitz, Daniel Lewis, Jennifer DeMell, Daniel J. Pennachio, Jenifer R. Hajzus, Rachael Myers-Ward, Soaram Kim, Kevin M. Daniels","doi":"10.1016/j.mtadv.2024.100467","DOIUrl":null,"url":null,"abstract":"<p>Nanostructured manganese oxides (MnO<sub>x</sub>) have shown incredible promise in constructing next-generation energy storage and catalytic systems. However, it has proven challenging to integrate with other low-dimensional materials due to harsh deposition conditions and poor structural stability. Here, we report the deposition of layered manganese dioxide (δ-MnO<sub>2</sub>) on bilayer epitaxial graphene (QEG) using a simple three-step electrochemical process involving no harsh chemicals. Using this process we can synthesize a 50 nm thick H–MnO<sub>2</sub> film in 1.25s. This synthetic birnessite is inherently water-stabilized, the first reported in the literature. We also confirm that this process does not cause structural damage to the QEG, as evidenced by the lack of D peak formation. This QEG heterostructure enhanced MnO<sub>2</sub>'s redox active gas sensing, enabling room temperature detection of NH<sub>3</sub> and NO<sub>2</sub>. We also report on transforming this δ-MnO<sub>2</sub> to other MnO<sub>x</sub> compounds, Mn<sub>2</sub>O<sub>3</sub> and Mn<sub>3</sub>O<sub>4</sub>, via mild annealing. This is confirmed by Raman spectroscopy of the films, which also confirms limited damage to the QEG substrate. To our knowledge, this is the first synthesis of Mn<sub>2</sub>O<sub>3</sub> and Mn<sub>3</sub>O<sub>4</sub> on pristine graphene substrates. Both methods demonstrate the potential of depositing and transforming multifunctional oxides on single-crystal graphene using QEG substrates, allowing for the formation of nanostructured heterostructures previously unseen. Additionally, the electrochemical nature of the deposition presents the ability to scale the process to the QEG wafer and adjust the solution to produce other powerful multifunctional oxides.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"59 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green growth of mixed valence manganese oxides on quasi-freestanding bilayer epitaxial graphene-silicon carbide substrates\",\"authors\":\"Michael Pedowitz, Daniel Lewis, Jennifer DeMell, Daniel J. Pennachio, Jenifer R. Hajzus, Rachael Myers-Ward, Soaram Kim, Kevin M. Daniels\",\"doi\":\"10.1016/j.mtadv.2024.100467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanostructured manganese oxides (MnO<sub>x</sub>) have shown incredible promise in constructing next-generation energy storage and catalytic systems. However, it has proven challenging to integrate with other low-dimensional materials due to harsh deposition conditions and poor structural stability. Here, we report the deposition of layered manganese dioxide (δ-MnO<sub>2</sub>) on bilayer epitaxial graphene (QEG) using a simple three-step electrochemical process involving no harsh chemicals. Using this process we can synthesize a 50 nm thick H–MnO<sub>2</sub> film in 1.25s. This synthetic birnessite is inherently water-stabilized, the first reported in the literature. We also confirm that this process does not cause structural damage to the QEG, as evidenced by the lack of D peak formation. This QEG heterostructure enhanced MnO<sub>2</sub>'s redox active gas sensing, enabling room temperature detection of NH<sub>3</sub> and NO<sub>2</sub>. We also report on transforming this δ-MnO<sub>2</sub> to other MnO<sub>x</sub> compounds, Mn<sub>2</sub>O<sub>3</sub> and Mn<sub>3</sub>O<sub>4</sub>, via mild annealing. This is confirmed by Raman spectroscopy of the films, which also confirms limited damage to the QEG substrate. To our knowledge, this is the first synthesis of Mn<sub>2</sub>O<sub>3</sub> and Mn<sub>3</sub>O<sub>4</sub> on pristine graphene substrates. Both methods demonstrate the potential of depositing and transforming multifunctional oxides on single-crystal graphene using QEG substrates, allowing for the formation of nanostructured heterostructures previously unseen. Additionally, the electrochemical nature of the deposition presents the ability to scale the process to the QEG wafer and adjust the solution to produce other powerful multifunctional oxides.</p>\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2024.100467\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100467","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Green growth of mixed valence manganese oxides on quasi-freestanding bilayer epitaxial graphene-silicon carbide substrates
Nanostructured manganese oxides (MnOx) have shown incredible promise in constructing next-generation energy storage and catalytic systems. However, it has proven challenging to integrate with other low-dimensional materials due to harsh deposition conditions and poor structural stability. Here, we report the deposition of layered manganese dioxide (δ-MnO2) on bilayer epitaxial graphene (QEG) using a simple three-step electrochemical process involving no harsh chemicals. Using this process we can synthesize a 50 nm thick H–MnO2 film in 1.25s. This synthetic birnessite is inherently water-stabilized, the first reported in the literature. We also confirm that this process does not cause structural damage to the QEG, as evidenced by the lack of D peak formation. This QEG heterostructure enhanced MnO2's redox active gas sensing, enabling room temperature detection of NH3 and NO2. We also report on transforming this δ-MnO2 to other MnOx compounds, Mn2O3 and Mn3O4, via mild annealing. This is confirmed by Raman spectroscopy of the films, which also confirms limited damage to the QEG substrate. To our knowledge, this is the first synthesis of Mn2O3 and Mn3O4 on pristine graphene substrates. Both methods demonstrate the potential of depositing and transforming multifunctional oxides on single-crystal graphene using QEG substrates, allowing for the formation of nanostructured heterostructures previously unseen. Additionally, the electrochemical nature of the deposition presents the ability to scale the process to the QEG wafer and adjust the solution to produce other powerful multifunctional oxides.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.