具有表面张力的两相可压缩流体流的热力学兼容双曲线模型

IF 1 4区 工程技术 Q4 MECHANICS Fluid Dynamics Pub Date : 2024-01-27 DOI:10.1134/s0015462823602103
E. I. Romenski, I. M. Peshkov
{"title":"具有表面张力的两相可压缩流体流的热力学兼容双曲线模型","authors":"E. I. Romenski, I. M. Peshkov","doi":"10.1134/s0015462823602103","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A model of a two-phase flow of compressible immiscible fluids is presented. Its derivation is based on the use of the theory of symmetric hyperbolic thermodynamically compatible systems. The model is an extension of the previously proposed thermodynamically compatible model of compressible two-phase flows due to the inclusion of new state variables of a medium associated with surface-tension forces. The governing equations of the model form a hyperbolic system of differential equations of the first order and satisfy the laws of thermodynamics (energy conservation and entropy increase). The properties of the model equations are studied, and it is shown that the Young–Laplace law of capillary pressure is fulfilled in the asymptotic approximation at the continuum level.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamically Compatible Hyperbolic Model for a Two-Phase Compressible Fluid Flow with Surface Tension\",\"authors\":\"E. I. Romenski, I. M. Peshkov\",\"doi\":\"10.1134/s0015462823602103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A model of a two-phase flow of compressible immiscible fluids is presented. Its derivation is based on the use of the theory of symmetric hyperbolic thermodynamically compatible systems. The model is an extension of the previously proposed thermodynamically compatible model of compressible two-phase flows due to the inclusion of new state variables of a medium associated with surface-tension forces. The governing equations of the model form a hyperbolic system of differential equations of the first order and satisfy the laws of thermodynamics (energy conservation and entropy increase). The properties of the model equations are studied, and it is shown that the Young–Laplace law of capillary pressure is fulfilled in the asymptotic approximation at the continuum level.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s0015462823602103\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0015462823602103","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 介绍了可压缩不相溶流体的两相流动模型。该模型的推导基于对称双曲热力学兼容系统理论。由于加入了与表面张力相关的介质新状态变量,该模型是之前提出的可压缩两相流热力学兼容模型的扩展。该模型的控制方程构成一个双曲一阶微分方程系统,并满足热力学定律(能量守恒和熵增加)。对模型方程的性质进行了研究,结果表明,毛细管压力的杨-拉普拉斯定律在连续水平的渐近近似中得到了满足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamically Compatible Hyperbolic Model for a Two-Phase Compressible Fluid Flow with Surface Tension

Abstract

A model of a two-phase flow of compressible immiscible fluids is presented. Its derivation is based on the use of the theory of symmetric hyperbolic thermodynamically compatible systems. The model is an extension of the previously proposed thermodynamically compatible model of compressible two-phase flows due to the inclusion of new state variables of a medium associated with surface-tension forces. The governing equations of the model form a hyperbolic system of differential equations of the first order and satisfy the laws of thermodynamics (energy conservation and entropy increase). The properties of the model equations are studied, and it is shown that the Young–Laplace law of capillary pressure is fulfilled in the asymptotic approximation at the continuum level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
期刊最新文献
Numerical Study on the Effect of the Nozzle Pressure Ratio on the Starting Characteristics of the Axisymmetric Divergent Dual Throat Nozzle Aerodynamic Analysis of Hypersonic Gliding Vehicles with Wide-Speed Range Based on the Cuspidal Waverider Dynamic Characteristics of the Droplet Impact on the Ultracold Surface under the Engine Cold Start Conditions Three-Dimensional Continuum Model of Lumen Formation in a Cluster of Cells Immersed in an Extracellular Matrix: The Role of Mechanical Factors Experimental and Numerical Investigation of the Cavitation-Induced Suction Effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1