测量气体混合物中亚微米粒子的热泳力

IF 3.9 3区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL Journal of Aerosol Science Pub Date : 2024-01-25 DOI:10.1016/j.jaerosci.2024.106337
Li Li , Sudarshan K. Loyalka , Tomoya Tamadate , Deepak Sapkota , Hui Ouyang , Christopher J. Hogan Jr.
{"title":"测量气体混合物中亚微米粒子的热泳力","authors":"Li Li ,&nbsp;Sudarshan K. Loyalka ,&nbsp;Tomoya Tamadate ,&nbsp;Deepak Sapkota ,&nbsp;Hui Ouyang ,&nbsp;Christopher J. Hogan Jr.","doi":"10.1016/j.jaerosci.2024.106337","DOIUrl":null,"url":null,"abstract":"<div><p><span>Thermophoresis, i.e. particle migration driven by a thermal energy gradient, has been of long-standing interest in aerosol science, yet is incompletely understood. For instance, for submicrometer particles in multicomponent gas mixtures, theories describing the thermophoretic force have not been fully developed and experimentally tested. Such particles fall outside both the continuum limit, where gas mixtures act on particles as a continuous fluid, and the free molecular limit, wherein the individual gas components act individually on particles. In this study, we propose and test an expression for the dimensionless thermophoretic force </span><span><math><mrow><msubsup><mi>F</mi><mrow><mi>t</mi><mi>h</mi></mrow><mo>*</mo></msubsup></mrow></math></span><span> and for an appropriate thermophoretic Knudsen number, </span><span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span>, applicable to <em>n</em>-component gas mixtures. Prior expressions for the thermophoretic force in the transition regime can be cast into <span><math><mrow><msubsup><mi>F</mi><mrow><mi>t</mi><mi>h</mi></mrow><mo>*</mo></msubsup></mrow></math></span> versus <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span><span> relationships. By requiring that the thermophoretic Knudsen number is proportional to the ratio of the continuum limit thermophoretic force to the free molecular thermophoretic force, we suggest that the thermophoretic mean free path is equivalent to the commonly-used hard sphere mean free path for single component gases, but that these two are not necessarily equivalent in multicomponent gas mixtures. The proposed relationship between </span><span><math><mrow><msubsup><mi>F</mi><mrow><mi>t</mi><mi>h</mi></mrow><mo>*</mo></msubsup></mrow></math></span> and <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span><span> is tested experimentally through measurements of the thermophoretic force acting on 100 nm–750 nm monodisperse KCl particles in a parallel plate precipitator in air, CO</span><sub>2</sub>, and three CO<sub>2</sub><span>–He gas mixtures. In the latter gas mixtures, thermophoresis is primarily driven by the lighter, more thermally-conductive gas, but particle drag is affected by both gases. We find data collapse to a reasonably narrow band spanning from the free molecular limit at high </span><span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span> to the continuum limit at low <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span>. However, data points at high <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span> in CO<sub>2</sub>–He gas mixtures of high He mole fraction have thermophoretic force values which exceed the free molecular limit predictions. Even including these anomalous data points, measurements do support the definition proposed of <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span> for the thermophoretic Knudsen number in gas mixtures through the collapse of <span><math><mrow><msubsup><mi>F</mi><mrow><mi>t</mi><mi>h</mi></mrow><mo>*</mo></msubsup></mrow></math></span> versus <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span><span> data. Data from previous studies for a similar particle-to-gas thermal conductivity ratio similarly collapse to the narrow band for data obtained here and data show reasonable agreement with prior theories for the thermophoretic force in the transition regime.</span></p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurements of the thermophoretic force on submicrometer particles in gas mixtures\",\"authors\":\"Li Li ,&nbsp;Sudarshan K. Loyalka ,&nbsp;Tomoya Tamadate ,&nbsp;Deepak Sapkota ,&nbsp;Hui Ouyang ,&nbsp;Christopher J. Hogan Jr.\",\"doi\":\"10.1016/j.jaerosci.2024.106337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Thermophoresis, i.e. particle migration driven by a thermal energy gradient, has been of long-standing interest in aerosol science, yet is incompletely understood. For instance, for submicrometer particles in multicomponent gas mixtures, theories describing the thermophoretic force have not been fully developed and experimentally tested. Such particles fall outside both the continuum limit, where gas mixtures act on particles as a continuous fluid, and the free molecular limit, wherein the individual gas components act individually on particles. In this study, we propose and test an expression for the dimensionless thermophoretic force </span><span><math><mrow><msubsup><mi>F</mi><mrow><mi>t</mi><mi>h</mi></mrow><mo>*</mo></msubsup></mrow></math></span><span> and for an appropriate thermophoretic Knudsen number, </span><span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span>, applicable to <em>n</em>-component gas mixtures. Prior expressions for the thermophoretic force in the transition regime can be cast into <span><math><mrow><msubsup><mi>F</mi><mrow><mi>t</mi><mi>h</mi></mrow><mo>*</mo></msubsup></mrow></math></span> versus <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span><span> relationships. By requiring that the thermophoretic Knudsen number is proportional to the ratio of the continuum limit thermophoretic force to the free molecular thermophoretic force, we suggest that the thermophoretic mean free path is equivalent to the commonly-used hard sphere mean free path for single component gases, but that these two are not necessarily equivalent in multicomponent gas mixtures. The proposed relationship between </span><span><math><mrow><msubsup><mi>F</mi><mrow><mi>t</mi><mi>h</mi></mrow><mo>*</mo></msubsup></mrow></math></span> and <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span><span> is tested experimentally through measurements of the thermophoretic force acting on 100 nm–750 nm monodisperse KCl particles in a parallel plate precipitator in air, CO</span><sub>2</sub>, and three CO<sub>2</sub><span>–He gas mixtures. In the latter gas mixtures, thermophoresis is primarily driven by the lighter, more thermally-conductive gas, but particle drag is affected by both gases. We find data collapse to a reasonably narrow band spanning from the free molecular limit at high </span><span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span> to the continuum limit at low <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span>. However, data points at high <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span> in CO<sub>2</sub>–He gas mixtures of high He mole fraction have thermophoretic force values which exceed the free molecular limit predictions. Even including these anomalous data points, measurements do support the definition proposed of <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span> for the thermophoretic Knudsen number in gas mixtures through the collapse of <span><math><mrow><msubsup><mi>F</mi><mrow><mi>t</mi><mi>h</mi></mrow><mo>*</mo></msubsup></mrow></math></span> versus <span><math><mrow><msub><mrow><mi>K</mi><mi>n</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow></math></span><span> data. Data from previous studies for a similar particle-to-gas thermal conductivity ratio similarly collapse to the narrow band for data obtained here and data show reasonable agreement with prior theories for the thermophoretic force in the transition regime.</span></p></div>\",\"PeriodicalId\":14880,\"journal\":{\"name\":\"Journal of Aerosol Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021850224000041\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850224000041","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

热泳,即由热能梯度驱动的粒子迁移,在气溶胶科学领域一直备受关注,但人们对它的理解却并不全面。例如,对于多组分气体混合物中的亚微米粒子,描述热泳力的理论尚未得到充分发展和实验测试。这些微粒既不属于连续极限(气体混合物作为连续流体作用于微粒),也不属于自由分子极限(单个气体成分单独作用于微粒)。在本研究中,我们提出并测试了适用于 n 组分气体混合物的无量纲热泳力 Fth* 和适当的热泳努森数 Knth 的表达式。过渡状态下的热泳力的先前表达式可以转化为 Fth* 与 Knth 的关系。通过要求热泳努森数与连续极限热泳力和自由分子热泳力之比成正比,我们认为热泳平均自由路径等同于常用的单组分气体硬球平均自由路径,但在多组分气体混合物中这两者并不一定等同。通过测量平行板沉淀器中 100 nm-750 nm 单分散 KCl 粒子在空气、CO2 和三种 CO2-He 混合气体中的热泳力,实验检验了 Fth* 和 Knth 之间的关系。在后一种混合气体中,热泳主要由较轻、导热性更强的气体驱动,但颗粒阻力同时受到两种气体的影响。我们发现,从高 Knth 时的自由分子极限到低 Knth 时的连续体极限,数据坍缩在一个相当窄的范围内。然而,在高 Knth 下,高 He 分子分数的 CO2-He 混合气体中的数据点的热泳力值超过了自由分子极限的预测值。即使包括这些异常数据点,通过 Fth* 与 Knth 数据的折叠,测量结果也确实支持为气体混合物中热泳努森数提出的 Knth 定义。以前针对类似颗粒与气体热导率比的研究数据也同样坍缩到了这里获得的数据的窄带,数据显示与以前关于过渡体系中热泳力的理论有合理的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurements of the thermophoretic force on submicrometer particles in gas mixtures

Thermophoresis, i.e. particle migration driven by a thermal energy gradient, has been of long-standing interest in aerosol science, yet is incompletely understood. For instance, for submicrometer particles in multicomponent gas mixtures, theories describing the thermophoretic force have not been fully developed and experimentally tested. Such particles fall outside both the continuum limit, where gas mixtures act on particles as a continuous fluid, and the free molecular limit, wherein the individual gas components act individually on particles. In this study, we propose and test an expression for the dimensionless thermophoretic force Fth* and for an appropriate thermophoretic Knudsen number, Knth, applicable to n-component gas mixtures. Prior expressions for the thermophoretic force in the transition regime can be cast into Fth* versus Knth relationships. By requiring that the thermophoretic Knudsen number is proportional to the ratio of the continuum limit thermophoretic force to the free molecular thermophoretic force, we suggest that the thermophoretic mean free path is equivalent to the commonly-used hard sphere mean free path for single component gases, but that these two are not necessarily equivalent in multicomponent gas mixtures. The proposed relationship between Fth* and Knth is tested experimentally through measurements of the thermophoretic force acting on 100 nm–750 nm monodisperse KCl particles in a parallel plate precipitator in air, CO2, and three CO2–He gas mixtures. In the latter gas mixtures, thermophoresis is primarily driven by the lighter, more thermally-conductive gas, but particle drag is affected by both gases. We find data collapse to a reasonably narrow band spanning from the free molecular limit at high Knth to the continuum limit at low Knth. However, data points at high Knth in CO2–He gas mixtures of high He mole fraction have thermophoretic force values which exceed the free molecular limit predictions. Even including these anomalous data points, measurements do support the definition proposed of Knth for the thermophoretic Knudsen number in gas mixtures through the collapse of Fth* versus Knth data. Data from previous studies for a similar particle-to-gas thermal conductivity ratio similarly collapse to the narrow band for data obtained here and data show reasonable agreement with prior theories for the thermophoretic force in the transition regime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Aerosol Science
Journal of Aerosol Science 环境科学-工程:化工
CiteScore
8.80
自引率
8.90%
发文量
127
审稿时长
35 days
期刊介绍: Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences. The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics: 1. Fundamental Aerosol Science. 2. Applied Aerosol Science. 3. Instrumentation & Measurement Methods.
期刊最新文献
Non-linear optics for an online probing of the specific surface area of nanoparticles in the aerosol phase Computational and experimental investigation of an aerosol extraction device for use in dentistry Collision frequencies across collision regimes in two-component systems Enhanced organic aerosol formation induced by inorganic aerosol formed in laboratory photochemical experiments Development of a source-term migration model for a large bubble formed in a core disruptive accident
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1